期刊文献+

基于神经网络信息融合的智能故障诊断方法 被引量:14

Fault Diagnosis Technology Based on Neural Network Information Fusion
下载PDF
导出
摘要 飞行状态时的飞机舵面故障诊断系统,含有系统和测量噪声及其时变、非线性等特点,采用常规的故障诊断方法很难实现对飞机舵面故障的准确诊断和告警,为了更好的实现对飞机舵面系统的故障诊断,将神经网络信息融合的智能故障诊断方法首次运用到舵面系统故障诊断中。该智能诊断方法应用神经网络的非线性拟合能力扩展舵面相关线位移传感器测量信息,同时采用D-S算法将相关传感器的输出信息进行融合,最后信息融合诊断策略根据这些信息确定出舵面相应的故障类型,从而可以对舵面故障信号进行有效识别和诊断。建立了某机舵面系统故障诊断的数学模型,并利用该模型对提出的智能故障诊断方法进行仿真验证,最后的仿真实验结果表明:该故障诊断结构形式对于舵面常见的故障能够进行识别和告警,诊断效果令人满意。 The plane steering surface fault diagnosis system in flight contains system and measuring noises. Due to their time - changeable and non - linear characteristics, the steering surface fault cannot be precisely diagnosed and alarmed with regular method. In order to improve the fault diagnosis, an intelligent fault diagnosis method based on neural network information fusion is applied in the fault diagnosis of the steering surface system for the first time. The intelligent diagnosis method adopts the nonlinear approach ability of neural network to expand relational linear movement sensor information of the steering surface, synthesizes the output data of relational sensors with the D - S algorithm, and finally the fusion diagnosis strategy ensures the corresponding fault type according to the information, thereby effective identification and diagnosis of the faulty signal are achieved. A mathematical model for the plane steering surface system's fault detection and diagnosis is established, with which, the computer simulation of the here mentioned intelligent fault diagnosis method is done. Simulation tests show that the structural form can identify and resume the steering surface's normal failure. The effect is satisfactory.
出处 《计算机仿真》 CSCD 2008年第6期35-37,58,共4页 Computer Simulation
关键词 神经网络 信息融合 故障诊断 Neutral network Information fusion Fault detection and diagnosis
  • 相关文献

参考文献5

二级参考文献34

  • 1翁桂荣.基于自适应神经模糊推理的传感器在线故障诊断[J].自动化仪表,2003,24(11):16-19. 被引量:1
  • 2时文刚,刘树林,张嘉钟,黄文虎.基于支持向量机的往复泵泵阀故障诊断方法[J].机械强度,2002,24(3):362-364. 被引量:32
  • 3徐文,王大忠,周泽存,陈珩.人工神经网络在变压器特征气体法故障诊断中的应用[J].高电压技术,1996,22(2):27-30. 被引量:26
  • 4[3]S. Rangwala and D. A. Dornfeld. Sensor Intergration UsingNeural Networks for Intelligent Tool Condition Monitoring[J]. Journal of Engineering for Industry, Aug. 1990,112:219~228
  • 5[5]A. Chiuderi, S. Fini and V. Cappellini. An Application ofData Fusion to Landcover Classification of Remote Sensed Imagery:a Neural Network Approach[A]. Proceedings of the 1994 lnternational Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI'94)[C].Las Vegas, 1994,2~5:756~762
  • 6[7]魏强.尺度共轭梯度神经网络及其在压缩机喘振监测中的应用[D]. 西安交通大学, 1996
  • 7Weiss J L, Willsky A S. Looze D P, et al, Detection and Isolation of Control Surface Effectiveness Failures in High Performance Aircraft. IEEE NAECON, 1985:552~559.
  • 8Huang C Y, Stengel R F. Failure Model Determination in a Knowledge-Based Control System. Proc of American Control Conference, 1987, 1643~1649.
  • 9Frank P M. Fault Diagnosis in Dynamic Systems Using Analytical and Knowledge-Based Redundancy--A Survey and Some New Results. Automatica, 1990, 26(3).
  • 10Thomas B W. Development of an Adaptive Failure-Detection and Identification System for Detecting Aircraft Control-Element Failure. NASA TP-3051, 1991.

共引文献127

同被引文献99

引证文献14

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部