期刊文献+

一种自适应非线性彩色图像增强技术 被引量:3

An Adaptive and Nonlinear Technique for Color Image Enhancement
下载PDF
导出
摘要 在图像处理和模式识别中,经常会遇到图像有过亮或过暗的区域。不仅会使图像的视觉效果不佳,而且会造成图像特征的丢失。提出一种新的自适应非线性彩色图像增强算法。新算法包括五个步骤:将彩色图像转换为灰度图像;利用非线性函数对图像增强;利用高斯核函数与图像进行卷积得到图像的邻域信息;根据邻域信息对图像进行自适应增强;图像色彩还原。最后,利用了基于SNoW的人脸定位器对算法的效果进行了验证。实验表明这种图像增强技术能够提高人脸定位器的准确率。 In image processing and pattern recognition, extremely bright or dark regions may exist in images, which will result in not only the degradation of visual effect but also loss of some features of the images. This paper presents a novel color image enhancement algorithm based on an adaptive and nonlinear technique, which consists of five stages: converting color images to grayscale images; intensity transforming based on a specifically designed nonlinear transfer function ; obtaining intensity information of neighborhood by a convolution process with a Gaussian kernel; enhancing contrast according to the information of neighborhood; restoring the color by a linear function. Finally, this algorithm is tested by SNoW - based face detector. The experiments show that the application of this image enhancement algorithm can effectively improve the hit rate of the face detection.
作者 徐健 常志国
出处 《计算机仿真》 CSCD 2008年第6期214-216,227,共4页 Computer Simulation
关键词 图像增强 自适应增强 邻域信息 高斯核 人脸定位 Image enhancement Adaptive enhancement Neighborhood information Gaussian kernel Face detection
  • 相关文献

参考文献8

  • 1LTao, RC Tompkins and KVAsari. An illuminance -reflectance model for nonlinear enhancement of video stream for homeland security applications [ J ]. IEEE International Workshop on Applied Imagery and Pattern Recognition, AIPR - 2005, Washington DC, October 19 - 21.
  • 2Arigela, Saibabu Asari, K Vijayan. An Adaptive and Non Linear Technique for Enhancement of Extremely High Contrast Images [ J ]. Applied Imagery and Pattern Recognition Workshop, Oct. 24 34, 2006
  • 3L Tao, Vijayan Asari. An integrated neighborhood dependent approach for nonlinear enhancement of color images. Information Technology: Coding and Computing [ C ], 2004. Proceedings, 2004,2:138 - 139 .
  • 4M Nilsson, J Nordberg, I Claesson. Face Detection using Local SMQT Features and Split up Snow Classifier [ C ]. Acoustics, Speech and Signal Processing, 2007, Ⅱ:589- 592.
  • 5KVAsari, EOguslu and SArigela. Nonlinear enhancement of extremely high contrast images for visibility improvement [ C ]. 5th Indian Conference on Computer Vision, Graphics and Image Processing, December 13 - 16, 2006.
  • 6D Roth, M Yang and N Ahuja. A snow - based face detector. Advances in Neural Information Processing Systems 12 [ C ], MIT Press 2000. 855 - 861.
  • 7章毓晋.图像处理和分析[M].北京:清华大学出版社,1999..
  • 8Alan Bovik. Handbook of Image and Video Processing[ M]. 北京:电子工业出版社,2006.

共引文献344

同被引文献26

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部