期刊文献+

椭圆轨道航天器相对导航的多项式插值滤波算法 被引量:2

Polynomial Interpolation Filtering for Relative Navigation of Spacecraft on Elliptical Orbit
下载PDF
导出
摘要 针对运行于椭圆轨道的航天器的相对自主导航问题,建立了惯性坐标系下的近距离相对运动方程,方程中没有圆轨道的假设,相对Clohessy-Wiltshire(C-W)方程具有更广的应用范围。将二阶多项式插值(Divided Difference 2,DD2)滤波应用于相对导航算法中,和扩展卡尔曼滤波(Extended Kalman Filter,EKF)相比,前者不需要对状态方程组进行微分处理,且对非线性函数统计特性近似到二阶程度。数值仿真比较了DD2滤波和EKF两种算法的性能,验证了利用惯性坐标系下的近距离相对运动方程实现相对导航的可行性,并分析了主动航天器的轨道和姿态确定误差对相对导航精度的影响。 According to Kepler orbit motion, the short distance relative dynamics equations of spacecrafts were obtained in the inertial frame. Compared with Clohessy-Wiltshire (C-W) equations, these equations were adaptable to the spacecrafts on the elliptical orbit because of no restriction for eccentricity. To avoid the Taylor linearization, the divided difference 2 (DD2) filtering used polynomial interpolation to parameterize the first two moments of a probability distribution. For the determination of the spacecrafts relative position and relative velocity, the DD2 filtering was more accurate and easier to implement than the extended Kalman filtering(EKF). The simulation results validate the availability of the relative navigation algorithm based on DD2 filtering.
作者 刘勇 徐世杰
出处 《中国空间科学技术》 EI CSCD 北大核心 2008年第3期37-44,共8页 Chinese Space Science and Technology
关键词 椭圆轨道 相对自主导航 相对运动方程 多项式插值 航天器 Elliptical orbit Relative autonomous navigation Relative motion equations Polynomial interpolation Spacecraft
  • 相关文献

参考文献7

  • 1wHARI B H, MYRON T, DAVID D B, Guidance algorithms for autonomous rendezvous of spacecraft with a tar get vehicle in circular orbit [R]. AIAA 2001-4393, 2001.
  • 2HARI B H, Autonomous relative navigation, attitude determination, pointing and tracking for spacecraft rendez vous [R]. AIAA-2003 5355, 2003.
  • 3张洪华,林来兴.卫星编队飞行相对轨道的确定[J].宇航学报,2002,23(6):77-81. 被引量:25
  • 4ALONSO R, CRASSIDIS J L, JUNKINS J L, Vision-based relative navigation for formation flying of spacecraft [R], AIAA-2000-4439, 2000.
  • 5NORGAARD M, POULSEN N K, RAVN O. New developments in state estimation for nonlinear systems [J]. Automatica, 2000, 36: 1627-1638.
  • 6JULIER S, UHLMANN J, DURRANT WHYTE H F. A new method for nonlinear transformation of means and covariance in filters and estimators [J]. IEEE Transactions on Automatic Control, 2000, 45 (31): 477-482.
  • 7肖业伦.航天器飞行动力学原理[M].北京:宇航出版社,1995..

二级参考文献3

  • 1[1]Sabol C. Satellite Formation Flying Design and Evolution,AAS 99-121,1999
  • 2[2]Blumer P. A Future Concept of Coordinated Orbit Control of Colocated Geostationary Satellites,AIAA 92-4654
  • 3[3]Ortega G. Autonomous Spacecraft Formation Flying:State Vector Determination Based on GPS-Alike Signal,Proc.Of ESA International Conference on Spacecraft Guidance,Navigation and Control Systems,ESTEC

共引文献90

同被引文献24

  • 1Chris S, Rich B, Craig A M. Satellite formation flying design and evolution [ J]. Journal of Spacecraft and Rockets, 2001,38 (2) :102 - 136.
  • 2Franz D B, Jonathan P H. Real-time experimental demonstration of precise decentralized relative navigation for formation flying space- craft[C]. AIAA Guidance Navigation, and Control Conference and Exhibit, Monterey, California, USA, Aug 5 - 8, 2002.
  • 3Sengupta P, Vadali S R. Formation design and geometry for Keplerian elliptic orbits with arbitrary eccentricity [ J ]. Journal of Guidance Control and Dynamics, 2007, 30(4) :951 - 962.
  • 4Schaub H, Vadali S R, Juukins J L, et al. Spacecraft formation flying using mean orbit elements[ J]. Journal of the Astronautical Sciences, 2000,48 ( 1 ) :69 - 87.
  • 5Schaub H, Alfriend K T. Hybrid cartesian and orbit element feedback law for formation flying spacecraft[ J]. Journal of Guidance Control and Dynamics, 2002, 25 ( 2 ) :387 - 393.
  • 6Schaub H. Spacecraft relative orbit geometry description through orbit element differences[ C ]. The 14th National Congress of Theoretical and Applied Mechanics, Blacksburg, USA, June 7 - 10, 2002.
  • 7Alfriend K T, Hanspeter S, Dong-Woo G. Gravitational pertur- bations, nonlinearity and circular orbit assumption effects on formation flying control strategies [ C ]. AAS Guidance and Control Conference, Breckenridge, USA, Feb 8- 10, 2000.
  • 8Sengupta P, Vadali S R, Alfriend K T. Second-order state transition for relative motion near perturbed elliptic orbits [ J ]. Celestial Mechanics and Dynamical Astronomy, 2007, 97(2):101 - 129.
  • 9Nathan B S, Robert A B, Frank R C. Comparison of the extend- ed and unscented Kahnan filters for angles based relative naviga- tion [ C ]. AIAA Astrodynamics Specialist Conference and Exhib- it, Honolulu, Hawaii, USA, Aug 18-21, 2008.
  • 10Xi X N. Fundamentals of near-earth spacecraft orbit[ M ]. Changsha: National University of Defense Technology Press, 2003.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部