期刊文献+

三维Minkowski空间中的特殊曲线和可展曲面 被引量:6

Special space curve and developable surfaces in Minkowski 3-space
下载PDF
导出
摘要 定义了三维Minkowski空间中一般螺线、斜螺线和锥面测地线,研究了Minkowski一般螺线的等价条件,给出Minkowski斜螺线和锥面测地线作为三维Minkowski空间中的特殊曲线所特有的性质,构造出三维Minkowski空间中的三类可展曲面;研究了Minkowski斜螺线和锥面测地线这两种特殊曲线和这些曲面的关系;还研究了Minkowski斜螺线和锥面测地线作为测地线的一类可展曲面的奇点分类. In this paper, the definitions of Minkowski general helix, Minkowski slant helices and Minkowski conical geodesic curves in Minkowski 3-space are given, equivalence conditions of Minkowski general helix are studied. Three kinds of developable surfaces are construct and the relationship with Minkowski slant helices and Minkowski conical geodesic curves has been studied. By applying the singularity theoerical knowledge, classification of special developable surfaces under the condition of the existence of such a special curve as geodesic was solved.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2008年第2期1-6,共6页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10471020) 教育部新世纪杰出人才资助项目(NCET05-0319) 黑龙江省教育厅科技项目(11531458)
关键词 达布向量 可展曲面 奇点 darboux vector developable surface singularity
  • 相关文献

参考文献10

  • 1BRUCE J W, GIBLIN P J. Curves and singularities, second edition[ M]. Cambridge: Cambridge Univ Press. 1992.
  • 2BRUCE J W. On singularities, envelopes and elementary differential geometry[J ]. Math Proc Cambridgephilos Soc. 1981,89:43-48.
  • 3BRUCE J W, GIBLIN P J. Generic curves and surface[J]. J London Math Soc, 1981:24,555-561.
  • 4IZUMIYA S, KATSUMI H, YAMASAKI T. The rectifying developable and the spherical Darboux image of a space curve[J]. Banach, Center Publication, 1999,50 : 137-149.
  • 5IZUMIYA S,TAKEUCHI N. New special curves and developable surface[J ]. Turk J Math,2004,28:153-163.
  • 6IZUMIYA S, TAKEUCHI N. Generic properties of helices and Bertrand curves[J ]. Georn, 2002,74: 97-109.
  • 7D-H PEI, SANO T. The focal developable and binormal indicatrix of a nonlightlike curve in Minkowski 3-spaee[J ]. Tokyo J Math, 2000,23 : 60-66.
  • 8裴东河,孙伟志,金应龙.三维Minkowski空间内的时间型曲线[J].东北师大学报(自然科学版),2001,33(3):25-33. 被引量:6
  • 9裴东河,孙伟志,帕提古丽,张立新.三维Minkowski空间内的空间型曲线[J].东北师大学报(自然科学版),2004,36(3):1-9. 被引量:8
  • 10姜杨,裴东河.三维Minkowski空间中非类光曲线的从切可展曲面的奇点分类[J].东北师大学报(自然科学版),2007,39(1):22-27. 被引量:7

二级参考文献18

  • 1裴东河,孙伟志,帕提古丽,张立新.三维Minkowski空间内的空间型曲线[J].东北师大学报(自然科学版),2004,36(3):1-9. 被引量:8
  • 2李武明,张庆成.四维双曲复空间与Lorentz群[J].东北师大学报(自然科学版),2005,37(2):15-17. 被引量:9
  • 3[1]Bruce J W.On singularities,envelopes and elementary differential geometry[J].Math Proc Camb Phil Soc,1981,89:43~48.
  • 4[2]Bruce J W,Giblin P J.Generic curves and surfaces[J].J London Math Soc,1981,24:555~561.
  • 5[3]Bruce J W,Giblin P J.Generic Geometry[J].Amer Math Monthly,1983,90:529~545.
  • 6[4]Bruce J W,Giblin P J.Curves and singularities(second edition)[M].Cambridge:Cambridge University Press,1992.268~290.
  • 7[5]Izumiya S,Pei D-H,Sano T.The lightcone Gamss map and the lightcone developable of a spacelike curve in Minkowski 3-space[J].Glasgow Math J,2000,42:75~89.
  • 8[6]O'Neill B.Semi-Riemannian geometry[M].New York:Academic Press,1983.202~270.
  • 9[7]Porteous I.The normal singularities of submanifold[J].J Diff Geom,1971,5:543~564.
  • 10BRUCE J W,GIBLIN P J.Curves and singularities(2nd.ed)[M].Cambridge:Univ Press,1992.

共引文献14

同被引文献29

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部