期刊文献+

奇异离散一阶周期系统的多重非负解 被引量:3

Multiplicity of nonnegative solutions to frist order singular discrete periodic systems
下载PDF
导出
摘要 研究了奇异离散一阶周期系统{Δx(i)=x(i)[a_1(i)-f_1(i,x(i),y(i))],Δy(i)=y(i)[a_2(i)-f_2(i,x(i),y(i))],ak(i+T)=ak(i),fk(i+T,x,y)=fk(i,x,y),i∈(-∞,+∞),k=1,2;T>0的多重非负解的存在性,其中非线性项fk(i,x,y)(k=1,2)在点(x,y)=(0,0)处具有奇性.并利用锥不动点定理证明了在适当的条件下这个问题至少存在两个解. This paper is devote to establish the multiplicity of nonnegative solutions to first order singular discrete periodic systems {Δx(i)=x(i)[a1(i)-f1(i,x(i),y(i))],Δy(i)=y(i)[a2(i)-f2(i,x(i),y(i))],ak(i+T)=ak(i),fk(i+T,x,y)=fk(i,x,y),i∈(-∞,+∞),k=1,2;T〉0 where the nonlinear term fk (i, x, y )( k = 1,2) may be singular at (x, y ) = (0,0). It is proved that such a problem has at least two nonnegative T-periodic solutions by using fixed point theorem in cones under our reasonable conditions.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2008年第2期15-21,共7页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10571021)
关键词 奇异 离散 周期非负解 锥不动点定理 singular discrete periodic nonnegative solution fixed point theorem in cones
  • 相关文献

参考文献3

二级参考文献40

  • 1林晓宁.一阶微分方程周期边值问题最优正解的存在性[J].东北师大学报(自然科学版),2005,37(1):7-10. 被引量:6
  • 2王红,林晓宁.奇异二阶微分方程狄利克莱边值问题解的存在及惟一性[J].东北师大学报(自然科学版),2006,38(2):1-5. 被引量:7
  • 3AGARWAL RP,O' REGAN D. Singular boundary value problems for uperlinear second order ordinary and Delay differential equations[J]. Journal of Differential Equations, 1996,130:333 - 335.
  • 4AGRWAL RP,O' REGAN D, LAKSHMIKANTHAM V. Ouadratc forms and or, linear non - resonant singular second order boundary value problems of limit crcle type[J ]. Journal for Analysis and its Applications, 2001,20: 727- 737.
  • 5AGARWAL RP,O' REGAN D. Existence theory for single and multiple solutions to singular positone boundary value problems[J ].Journal of Differential Equations,2001,175:393 - 414.
  • 6STEVEN D TALIAFERRO. A singular boundary value problems[J]. Nonlinear Anal, 1978,6:897 - 904.
  • 7AGARWAL RP,O' REGAN D. Existence theory for singular initial and boundary value problems: a fixed point approach[J]. Appl Anal,2002,81:391 -434.
  • 8GUO D, LAKSHMIKANTHAM V. Nonliear problems in abstract cones[M]. New York:Academic Press lnc, 1998.
  • 9GUO D. Fixed point of mied monotone operators and applications[J]. Appl Anal, 1998,31:215 - 224.
  • 10GUO D. The order methods in nonlinear analysis[M]. Jinan:Technical and Science Press,2000.

共引文献23

同被引文献38

  • 1郭大钧.非线性分析中的序方法[M].济南:山东科技出版社,2000.
  • 2MA DE XIANG,GE WEI-GAO.Existence and iteration of positive pseudo-symmetric solutions for a three-point second-order p-Lapliacian BVP[J].Applied Mathematics Letters,2007,20:1244-1249.
  • 3WANG DA-BIN,GUAN WEN.Three positive solutions of boundary value problems for p-Laplacian difference equations[J].Compputers and Mathematics with Applications,2008,55(9):1943-1949.
  • 4LI YOUGKUN,LU LINGHONG.Existence of positive solutions of p-Laplacian difference equations[J].Applied Mathematics Letters,2006,19:1019-1023.
  • 5SUN HONG-RUI,LI WAN-TONG.Existence theory for positive solutions to one-dimensional p-Laplacian boundary value problems on time scales[J].Journal of Differential Equations,2007,240:217-248.
  • 6HE XIAOMING.Double positive solutions of a three-point boundary value problem for the onedimensional p-Lapacian[J].Applied Mathematics Letters,2004,17:867-873.
  • 7CHU JIFENG,JIANG DAQING.Eigenvalues and discrete boundary value problems for the one-dimensional p-laplacian[J].Journal of Mathematical Analysis and Applications,2005,305:452-465.
  • 8CHENG JIANGANG,SHAO YANFANG.The positive solutions of boundary value problems for a class of one-dimensional p-Laplacians[J].Nonlinear Analysis:Theory,Methods and Applications,2008,68:883-891.
  • 9FENG HANYING,GE WEIGAO.Triple symmetric positive solutions for multipoint boundary boundary-value problem with one-dimensional p-Laplacian[J].Mathematical and Computer Modelling,2008,47:186-195.
  • 10LIU BING.Positive solutions of three-point boundary value problems for the one-dimensional plaplacian with infinitely many singularities[J].Applied Mathematics Letters,2004,17:655-661.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部