期刊文献+

线性常微分扰动方程的级数解空间分析

On Series Solution Space of Linear Ordinary Differential Perturbation Equation
下载PDF
导出
摘要 用无限阶矩阵研究线性常微分扰动方程的幂级数解空间,发现加入非奇异扰动项后它的维数增加,但幂级数解的收敛半径一般不与扰动系数ε一起趋向零;并找到幂级数解的系数ε变化不大的一类奇异扰动方程。 The series solution space of the linear ordinary differential perturbation equation is studied with infinite order matrix. Its dimension is increased by non-singular perturbation. But the radius of convergence does not approach to zero along with the perturbation coefficient e. The singular perturbation equations whose coefficients of series solutions vary a fat lot are found.
作者 李大林
出处 《广西工学院学报》 CAS 2008年第1期22-25,共4页 Journal of Guangxi University of Technology
基金 广西教育厅科研项目(700707LZ259)资助
关键词 常微分方程 扰动解 无限阶矩阵 级数解 奇点 ordinary differential equation perturbation solution infinite order matrix series solution singular point
  • 相关文献

参考文献4

二级参考文献15

  • 1[6]Fazhan Geng,Minggen Cui.Solving a nonlinear system of second order boundary value problems.J.Math.Anal.Appl.,2007,327:1167 ~ 1181.
  • 2[7]Chunli Li,Minggen Cui.The exact solution for solving a class nonlinear operator equations in the reproducing kernel space.Apppl.Math.Compu.,2003,143:393 ~ 399.
  • 3[1]A.M.Watts.A singular perturbation problem with a turning point.Bull.Austral.Math.Soc..1971,5:61 ~73.
  • 4[2]D.R.Smith.Singular-perturbation Theory.Cambridge University Press,Cambridge,1985.
  • 5[3]A.Wazwaz.Two Turuing Points of Second order.SIAM J.Appl.Math.,1990,50:883 ~ 892.
  • 6[4]Heping Yang.On a singular perturbation problem with two second -order turning points.Journal of Computational and Applied Mathematics,2006,190:287 ~ 303.
  • 7孙善利,王悦健.Bergman空间上一类解析Toeplitz算子的换位[J].吉林大学自然科学学报,1997(2):4-8. 被引量:5
  • 8华东师范大学数学系.数学分析[M].北京:高等教育出版社,1985.
  • 9Bini D A,Gemignani L,Meini B.Computations with Infinite Toeplitz Matrices and Polynomials[J].Linear Algebra Appl,2002,343/344:21-61.
  • 10Strohmer T.Four Short Stories about Toeplitz Matrix Calculation[J].Linear Algebra Appl,2002,343/344:321-344.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部