摘要
时滞和滤波联合辨识问题既是经典时滞估计问题的推广,又是自适应系统建模和时灌估计两方面的交叉。本文针对先滤波后时滞的系统模型,从方法上改进BOUDREAU&KABAL提出的基于快速横向滤波器的递谁最小二乘滤波算法,使其时间复杂度由O[19ρ]下降为0[7ρ],便于实时在线应用。我们以低通滤波器与线性时滞串联系统的辨识为例,表现该算法对变化时滞的跟踪能力及联合辨识性能。
The problem of jonit delay-filter identification is concerned with conventional time-delay es-timation, modeling of adaptive spstem and time-delay estimation This paper deals with system model of first filterthen time-delay, improved the algorithm of recursive least squares filter baased on fast across filter form Boudrfau& Kabel, the time complexity is redused from 0[19ρ] to 0[7ρ]. This method will convenient be used in real-timeenvironment. In this paper the authors gave example on spstem identification of low pass filter and lineartime-delay serial spstem, so that exhibits track abilirty for variance of time delay and property for jointidentification of this algorithm.
出处
《信号处理》
CSCD
1997年第4期349-356,共8页
Journal of Signal Processing
基金
国家攀登计划认知科学(神经网络)重大关键项目
关键词
时滞估计
最小二乘算法
系统辨识
time-delay estimation, recursive least squares algorithm, system identification