期刊文献+

甘薯淀粉热力学特性及其回生机理探讨 被引量:18

Study on the Thermal Properties and Retrogradation Mechanism of Sweet Potato Starch
下载PDF
导出
摘要 采用差示扫描量热仪对甘薯淀粉在不同水分、糊化终止温度、降温速率和保持温度下的回生过程进行了研究,发现在水分质量分数70%时,糊化终止温度为90℃以上,渗漏的直链淀粉分子不仅相互聚集形成较大的有序结晶区域,还与体系中的脂质分子结合形成复合物,在后期冷却过程中形成螺旋结晶,回生程度达到最大。甘薯淀粉糊在0^-4℃储藏时,冰晶的形成过程将阻碍支链淀粉外链的相互并拢和直链淀粉分子链的重排;4℃左右,结晶生长速度虽较慢,但最终回生程度最大;慢速降温冷却也有利于增大回生程度。 The retrogradation of sweet potato starch under different moisture contents, final temperatures for gelatinization, cooling rates and holding temperatures were investigated using Differential Scanning Calorimetry. The result illuminated that under such conditions as 70% of moisture content and above 90℃, amylose in sweet potato starch leached out of starch granules, then congregated to form a larger ordered crystalline area, and formed amylose--lipid complexes, which form helices when cooling. The ice-crystal baffled the congregation of exterior chains in amylopectin and the re--arranging of amylose when sweet potato starch paste was stored under the range of 0 ℃--4 ℃. The rate of crystal growth was slow and the degree of retrogradation was largest when storage temperature ascended to about 4℃. The retrogradation was increased by a slower cooling rate.
出处 《食品与生物技术学报》 CAS CSCD 北大核心 2008年第3期21-27,共7页 Journal of Food Science and Biotechnology
基金 国家“十一五”科技支撑计划重点项目(2006BAD02B01)
关键词 甘薯淀粉 糊化 回生 水分 温度 降温速率 sweet potato starch gelatinization retrogradation moisture temperature coolingrate
  • 相关文献

参考文献21

  • 1Yuan R C, Thompson D B, Boyer C D. Fine structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from three wx containing genotypes in two inbred lines[J]. Cereal Chemislry, 1993, 70(1) : 81- 89.
  • 2丁文平.大米淀粉回生及鲜湿米线生产的研究[D].无锡:江南大学,2002.
  • 3Liu Q, Doubles B Thompson. Retrogradation of du wx and su2 wx maize starches after different gelatinization heat treatments[J]. Cereal Chemistry, 1998, 75(6): 868-874.
  • 4Boltz K W, Thompson D B. Initial heating temperature and native lipid affects ordering of amylose during cooling of highamylose starches [J]. Cereal Chemistry, 1999, 76: 204-212.
  • 5Galvez F C, Resurreccion A V, Ware G O. Process variables, gelatinized starch and moisture effects on physical properties of mungbean noodles[J]. Journal of Food Science, 1994, 59(2) : 378-386.
  • 6Galvez F C, Resurreccion A V, Ware G O. Formulation and process optimization of mungbean noodles[J]. Journal of Food Processing and Preservation, 1995, 19: 191-205.
  • 7I Njintang Y N, Mbofung C M. Kinetics of starch gelatinization and mass transfer during cooking of taro (Colacasia esculenta L. Schott) slices [J]. Starch/Starke, 2003, 55: 170-176.
  • 8Parker R, Ring S G. Aspects of the physical chemistry of starch [J]. Journal of Cereal Science, 2001, 34: 1-13.
  • 9Igura N, Hayakawa I, Fujio Y. Effect of water state on thermal properties of sweet potato starch [J]. Oyo Toshitsu Kagaku, 1997, 44(3): 329-332.
  • 10Silverio J, Fredriksson H, Andersson R, et al. The effect of temperature cycling on the amylopectin retrogradation of starches with different amylopectin unit-chain length distribution [J]. Carbohydrate Polymers, 2000, 42: 175-184.

共引文献3

同被引文献348

引证文献18

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部