期刊文献+

一类具有年龄结构的食物链扩散模型的稳定性 被引量:1

The Stability of a Diffusive Predator-prey Model with Stage-structure
下载PDF
导出
摘要 讨论了一类具有年龄结构的食物链扩散模型在齐次Neumann边界条件下解的存在唯一性和一致有界性,并用线性化方法和Lyapunov函数方法分别证明了该模型正平衡点的局部和全局渐近稳定性. In this paper, the global existence, uniqueness and uniform bound of positive solutions to a food chain reaction-diffusion system with stage-structure are proved under homogeneous Neumann boundary conditions. The local asymptotical stability and global asymptotical stability are proved by linearization and Lyapunov functions respectively.
出处 《温州大学学报(自然科学版)》 2008年第4期6-10,共5页 Journal of Wenzhou University(Natural Science Edition)
基金 甘肃省教育厅科研项目(0704-14)
关键词 食物链 年龄结构 反应扩散 局部渐近稳定性 全局渐近稳定性 Predator-prey Stage-structure Reaction-diffusion Local asymptotical stability Global asymptotical stability
  • 相关文献

参考文献10

  • 1[1]Zhang X,Chen L S,Neamann A U.the Stage-structured Predator-prey Model and Optimal Harvesting Policy[J].Math Biosci,2000,168:201-210.
  • 2许飞,侯燕,林支桂.带时滞的具有阶段结构的捕食抛物型方程组[J].数学学报(中文版),2005,48(6):1121-1130. 被引量:11
  • 3[3]Xu R.A Reaction-diffusion Predator-prey Model with Stage Structure and Nonlocal Delay[J].Math Appl Comput,2006,175(2):984-1006.
  • 4马知恩.种群生态学的数学模型与研究[M].合肥:安徽教育出版社,1994..
  • 5[5]Zhang S,Chen L.Chaos in Three Species Food Chain System with Impulsive Perturbations[J].Chaos,Solitons and Fractals,2005,24:73-83.
  • 6[6]Brauer E Soudack A C.Coexistence Properties of Some Predator-prey Systems under Constant Rate Harvesting and Stocking.[J] J Math Biol,1981,12:101-114.
  • 7[7]Brauer E Soudack A C.Constant-rate Stocking of Predator-prey Systems[J].J Math Biol,1981,11:1-14.
  • 8[8]Pao C V.Nonlinear Parabolic and Elliptic Equations[M].New York:Prenum,1992:132-135.
  • 9[9]Henry D,Geometric Theory of Semilinear Parabolic Equations[M].Berlin,New York:Springer,1981:111-113.
  • 10[11]Brown K J,Duune P C,Gardner R A.A Semilinear Parabolic System Arising in the Theory of Superconductivity[J].J Diff Eqs,1981,40:232-252.

二级参考文献16

  • 1Pao C. V., Convergence of solutions of reaction-diffusion systems with time delays, Nonlinear Analysis, 2002,48: 349-362.
  • 2Hofbauer J., Sigmund K., The theory of evolution and dynamical systems, Cambridge: Cambridge University Press, 1988.
  • 3May R. M., Stability and complexity in Model ecosystems, Princeton: Princeton Univ. Press, 1974.
  • 4Teng Z. D., Permance and stability of Lotka-Volterra type N-species competitive system, Acta Mathematica Sinica, Chinese Series, 2002, 45(5): 905-918.
  • 5Alello W. G., Freedman H. I., A time-delay model of single species growth with stage tructure, Math. Biosci.,1990, 101:139 153.
  • 6Freedmann H. I., Wu J. H., Persistence and global asymptotic stability of single species dispersal models with stage structure, Quart. Appl. Math., 1991, 2: 351-371.
  • 7Gurney W. S. C., Nisbet R. M., Fluctuating periodicity, generation separation, and the expression of larval competition, Theor. Pop. Biol., 1985, 28: 150-180.
  • 8Liu S. Q., Chen L. S., Luo G. L. and Jiang Y. L., Asymptotic behaviors of competive Lotka-Volterra system with stage structure, J. Math. Anal. Appl., 2002, 271: 124-138.
  • 9Ou L. M., Luo G. L., Yang Y. L., and Li Y. P., The asymptotic behaviors of a stage-structured autonomous predator-prey system with time delay, J. Math. Anal. Appl., 2003, 283: 534-548.
  • 10Okubo A., Diffusion and ecological problems: mathematical models, Berlin, New York: Springer-Verlag, 1980.

共引文献11

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部