期刊文献+

极限波浪运动特性的非线性数值模拟 被引量:2

Nonlinear numerical simulation on the extreme-wave kinematics
下载PDF
导出
摘要 利用时域高阶边界元方法建立了模拟极限波浪运动的完全非线性数值模型,其中自由水面满足完全非线性自由水面条件。采用半混合欧拉-拉格朗日方法追踪流体瞬时水面,运用四阶Runge-Kutta方法更新下一时间步的波面和速度势,同时应用镜像格林函数消除水槽两个侧面和底面上的积分。研究中利用波浪聚焦的方法产生极限波浪,并且在水槽中开展了物理模型实验,将测点试验数据与数值结果进行了对比,两者吻合得很好。对极限波浪运动的非线性和流域内速度分布进行了研究。 A fully-nonlinear numerical model based on the time-domain higher-order boundary element method (HOBEM) is established to simulate the kinematics of extreme waves. In the model, the fully- nonlinear free surface boundary conditions are satisfied and the semimixed Euler-Lagrange method is used to track free surface; the fourth-order Runge-Kutta method is used to refresh the wave elevation and the velocity potential on the free surface at each time step; the image Green function is used so that the integration on the lateral surfaces and bottom are excluded. The extreme waves are generated by the method of wave focusing. The physical experiments are carried out in a wave flume. On the horizontal velocity of the gauge, the numerical solutions are agreed well with experimental results. The characteristics of the nonlinear extreme-wave kinematics and the velocity distribution are studied here.
出处 《海洋学报》 CAS CSCD 北大核心 2008年第3期126-132,共7页
基金 国家自然科学基金资助项目(5070900550639030) 国家高技术研究发展计划(“863”计划)资助项目(2006AA09A109-3) 大连理工大学青年教师基金资助项目
关键词 数值波浪水槽 镜像格林函数 高阶边界元 完全非线性 极限波浪 numerical wave tank image Green function higher-order boundary element method full non- linearity extreme wave
  • 相关文献

参考文献10

  • 1BALDOCK T E, SWAN C, TAYLOR P H. A laboratory study of nonlinear surface waves on water[J]. Phil Trans R Soc Lond (A), 1996, 354:649-676.
  • 2JOHANNESSEN T, SWAN C. A laboratory study of the focusing of transient and directionally spread surface water waves[J]. Proc R Soc Lond (A), 2001, 457:971-1006.
  • 3SHE K, GREATED C A, EASSON W J. Experimental study of three-dimensional wave kinematics[J]. Applied Ocean Research, 1997, 19:329-343.
  • 4BORTHWICK A G L, HUNT A C, FENG T, et al. Flow kinematics of focused wave groups on a plane beach in the UK costal research facility[J]. Coastal Engineering, 2006, 53:1033-1044.
  • 5FENTON J D , RIENECKER M M. A Fourier method for solving nonlinear water-wave problems: application to solitary-wave interactions [J]. J Fluid Mech, 1982, 118:411-443.
  • 6JOHNNESSEN T B, SWAN C. Nonlinear transient water waves: Part 1. A numerical method of computation with comparisons to 2-D laboratory data [J]. Appl Ocean Res, 1997, 19:293-308.
  • 7BATEMAN W J D, SWAN C, TAYLOR P H. On the calculation of the water particle kinematics arising in a directionally spread wavefield [J]. Journal of Computational Physics, 2003, 186:70-92.
  • 8SCHaFFER H A. Second-order wavemaker theory for irregular waves [J]. Ocean Engineering, 1996, 21(1): 47-88.
  • 9NEWMAN J N. Approximation of free-surface Green functions [M] // MARTIN P A, WHICKAM G R, eds. Wave Asympotics. Cambridge: Cambridge University Press, 1992 : 107-142.
  • 10NING De-zhi,TENG Bin. Numerical simulation of fully nonlinear irregular wave tank in three-dimension [J]. International Journal for Numerical Methods in Fluids, 2007,53(12): 1847-1862.

同被引文献41

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部