期刊文献+

一类二阶非Hamiltonian系统的变分原理及周期解的存在性定理 被引量:2

Variational principle and existence theorems of periodic solutions for a class of second order non-Hamiltonian systems
下载PDF
导出
摘要 研究了阻尼振动问题{(t)+g(t)(t)=▽F(t,u(t)),a.e.t∈[0,T];u(0)-u(T)=(0)-(T)=0.其中,T>0,g(t)∈L∞(0,T;R),G(t)=integral from n=0 to t g(s)ds,G(T)=0,F:[0,T]×RN→R.给出了其变分原理和2个周期解的存在性定理.即使在g(t)=0特殊情况下,所得结果也是新的. The following damped vibration problem was studied,{ü(t)+g(t)u(t)=△F(t,u(t)),a.e.t∈[0,T]; u(0)-u(T)=u(0)-u(T)=0where T〉0,g(t)∈L^∞(0,T,R),G(t)=∫^tog(s)ds,G(T)=0,F;[0,T]×R^N→R.The variational principle and two existence theorems for periodic solutions were given. In the special case while g(t) = 0 the results presented was also a new result.
作者 陈季林
出处 《浙江师范大学学报(自然科学版)》 CAS 2008年第3期275-279,共5页 Journal of Zhejiang Normal University:Natural Sciences
关键词 临界点 周期解 二阶Hamiltonian系统 Sobolev’s不等式 critical point periodic solution second order Hamiltonian system Sobolev's inequality
  • 相关文献

参考文献15

  • 1Mawhin J, Willem M. Critical point theory and Hamihonian systems[ M ]. New York:Springer-Verlag, 1989.
  • 2Antonacci F, Magrone P. Second order nonautonomous systems with symmetric potential changing sign[ J ]. Rend Mat Appl, 1998,18 (7) :367- 379.
  • 3Faraci F, Livrea R. Infinitely many periodic solutions for a second-order nonautonomous system [ J ]. Nonlinear Analysis, 2003,54 (3) :417-429.
  • 4Ou Z Q,Tang Chunlei. Existence of homoclinic solution for the second order Hamiltonian systems[J]. J Math Anal Appl,2004,291 ( 1 ) :203- 213.
  • 5Tang Chunlei. Periodic solutions of non-autonomous second order systems with y-quasisubadditive potential [ J ], J Math Anal Appl, 1995,189 (3) :671-675.
  • 6Tang Chunlei. Existence and multiplicity of periodic solutions for nonautonomous second order systems Nonlinear Analysis [ J ]. Nonlinear Analysis, 1998,32 ( 3 ) : 299-304.
  • 7Tang Chunlei. Periodic Solutions of Non-autonomous Second Order Systems[ J ], J Math Anal Appl, 1996,202 (2) :465-469.
  • 8Tang Chunlei, Wu X P. Periodic Solutions for Second Order Systems with Not Uniformly Coercive Potential [ J ]. J Math Anal Appl, 2001,259 (2) :386-397.
  • 9Tang Chunlei. Periodic solutions for non-autonomous second order systems with sublinear nonlinearity [ J ]. Proc Amer Math Soc, 1998,126 ( 11 ) :3263-3270,
  • 10Tang Chunlei, Wu X P. Periodic solutions for a class of nonantonomous subquadratic second order Hamiltonian systems[ J ]. J Math Anal Appl, 2002,275 ( 2 ) : 870-882.

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部