摘要
研究了阻尼振动问题{(t)+g(t)(t)=▽F(t,u(t)),a.e.t∈[0,T];u(0)-u(T)=(0)-(T)=0.其中,T>0,g(t)∈L∞(0,T;R),G(t)=integral from n=0 to t g(s)ds,G(T)=0,F:[0,T]×RN→R.给出了其变分原理和2个周期解的存在性定理.即使在g(t)=0特殊情况下,所得结果也是新的.
The following damped vibration problem was studied,{ü(t)+g(t)u(t)=△F(t,u(t)),a.e.t∈[0,T]; u(0)-u(T)=u(0)-u(T)=0where T〉0,g(t)∈L^∞(0,T,R),G(t)=∫^tog(s)ds,G(T)=0,F;[0,T]×R^N→R.The variational principle and two existence theorems for periodic solutions were given. In the special case while g(t) = 0 the results presented was also a new result.
出处
《浙江师范大学学报(自然科学版)》
CAS
2008年第3期275-279,共5页
Journal of Zhejiang Normal University:Natural Sciences