摘要
条件自回归极差模型(CARRX)是一类新的描述波动率的模型。为了提高CARRX类模型的预测精度,文章将最小二乘支持向量回归机(LSSVR)应用于CARRX模型。先将CARRX模型转化成ARMAX形式,再利用LSSVR对ARMAX模型的参数进行估计(LSSVR-ARMAX)。通过对沪深300指数的预测实证分析,发现无论是采用直接预测还是迭代预测,LSSVR-ARMAX模型的样本外预测能力均优于Perez-Cruz(2003)提出的方法;LSSVR的估计方法能够在长期预测中捕捉到极差波动率的变动趋势,而CARRX类模型对中短期极差波动率的预测准确度较高。
出处
《统计与决策》
CSSCI
北大核心
2008年第13期48-50,共3页
Statistics & Decision