摘要
研究了一类两种群相互竞争的非线性高维SEIR传染病数学模型动力学性质,综合利用Lasalle不变集原理,Lyapunov函数,Routh-Hurwitz判据和Krasnoselskii等多种方法,得到了边界平衡点的全局渐近稳定和正平衡点局部渐近稳定的阈值条件.
Dynamic property about a nonlinear dimensional SEIR epidemic model of two competitive species isstudied. By using some methods, including Lasalle invariant set principle, Lyapunov function, Routh-Hurwitz criterion and Krasnoselskii technique etc., some threshold conditions are identified for the global stabilities of bounded equilibria and the local stability of positive equilibrium.
出处
《纯粹数学与应用数学》
CSCD
北大核心
2008年第2期209-219,共11页
Pure and Applied Mathematics
基金
国家自然科学基金重点项目(10531030)
国家"十五"医学科技攻关项目(2004BA719A01)
关键词
竞争系统
传染病
数学模型
闽值
渐近稳定性
competitive system, epidemic, mathematic model, threshold, asymptotic stability