期刊文献+

一类广义锥类凸映射

A class of generalized cone convex-like mappings
下载PDF
导出
摘要 借助于所谓的寻址和存储理论中的有关(σ,S)策略的最优性问题,在拓扑向量空间序锥的意义下引入一类广义锥类凸映射,讨论这类映射的若干性质,并给出它的一些刻画. With the concept of optimality of a so-called (σ, S) policy in addressing production and inventory problems, this paper introduces a class of generalized cone convex-like mappings in the sense of topological vector space ordered cone. The characterizations of some properties for those mappings are presented.
机构地区 集美大学理学院
出处 《纯粹数学与应用数学》 CSCD 北大核心 2008年第2期278-282,共5页 Pure and Applied Mathematics
基金 国家自然科学基金(10771086) 福建省自然科学基金(S0650021)
关键词 Kc-凸 K(y-x)-凸 0次齐性 右导数 Kc-convex, K(y-x)-convex, homogenous of degree O, right derivative
  • 相关文献

参考文献12

  • 1Avriel M , Diewert W E , Schaible S, et al, Generalized Concavity[M]. New York: Plenum Publishing Corporation, 1988.
  • 2Mas-Colell A , Whinston M D, Green J R. Micro-economic Theory[M]. New York: Oxford University Press, 1995.
  • 3Pales Z. On approximately convex functions[J]. Proceedings of the American Mathematical Society, 2003, 131:243-252.
  • 4Aussel D, Daniilidis A, ThibaultL. Subsmooth sets: functional characterizations and related concepts[J]. Transactions of the American Mathematical Society, 2005, 357:1275-1301.
  • 5Daniilidis A, Georgiev P. Approximate convexity and submonotonicity[J]. Journal of Mathematical Analysis and Applications, 2004, 122:19-39.
  • 6Ngai H V, Penot J P, Approximately convex functions and approximately monotonic operators[J]. Nonlinear analysis: Theory, Methods and Applications, 2006, 66(3):547-564.
  • 7Martinez-Legaz J E, RubinovA M, Schaible S. Increasing quasiconcave co-radiant functions with applications in mathematical economics[J], Mathematical Methods of Operations Research, 2005, 61:261-280.
  • 8Huang L G. Existence of solutions on weak vector equilibrium problems[J]. Nonlinear analysis: Theory, Methods and Applications, 2006, 65:795-801.
  • 9Ohno K, Ishigaki T. Multi-item continuous review inventory system with compound poisson demands[J]. Mathematical Methods of Operations Research, 2001, 53:147-165.
  • 10Kalin D. On the optimality of (σ, S) policies[J]. Mathematics of Operations Research, 1980, 5:293-307.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部