摘要
对任意正整数n,著名的Smarandache函数S(n)定义为最小的正整数m使得n|m!.即就是S(n)=min{m:m∈N,n|m!}.令PS(n)表示区间[1,n]叫中S(n)为素数的正整数n的个数.在一篇未发表的文献中,J.Castillo建议我们研究当n→∞时,比值PS(n)/n的极限存在问题.如果存在,确定其极限.本文的主要目的是利用初等方法研究这一问题,并得到彻底解决!即就是证明该极限存在且为1.
For any positive integer n, the famous Smarandache function S(n) is defined as the smallest positive integer m such that nlm!. That is,S(n)=min{m:m∈N,n|m!}.Let PS(n) denotes the number of all n in the interval [1, n] such that S(n) be a prime. In an unpublished paper, J.Castillo asked us to determine the limit PS(n)/n as n → ∞, if this limit exists, find its value. In this paper, we using the elementary method to study this problem, and prove that its limit exists, and its value is 1.
出处
《纯粹数学与应用数学》
CSCD
北大核心
2008年第2期385-387,共3页
Pure and Applied Mathematics
基金
国家自然科学基金(10671155)