期刊文献+

带有负顾客且具有Bernoulli反馈的M/M/1工作休假排队 被引量:11

M/M/1 Bernoulli Feedback Queue with Negative Customers and Working Vacations
下载PDF
导出
摘要 本文研究带反馈的具有正、负两类顾客的M/M/1工作休假排队模型。工作休假策略为空竭服务多重工作休假。负顾客一对一抵消队首正在接受服务的正顾客(若有),若系统中无正顾客时,到达的负顾客自动消失,负顾客不接受服务。完成服务的正顾客以概率p(0<p≤1)离开系统,以概率1-p反馈到队尾寻求再次服务。使用拟生灭过程和矩阵几何解方法得到了系统队长的稳态分布,证明了系统队长随机分解结果并给出稳态下系统中正顾客的平均队长。 The paper deals with an M/M/1 feedback queue with working vacations in which customers are either "positive" or " negative". The working vacation policy is exhaustive service and multiple working vacations. Negative customers remove positive customers only one by one at the head ( if present). When a negative customer arrives, if the system is empty, it will disappear. Negative customers need no services. Just after comple- tion of his service, a positive customer may leave the system with probabilityp (0 〈 p ≤ 1 ), or feedback with probabilityl -p. Using QBD (quasi birth and death) process and matrix-geometric solution, we obtain the stead y-state distributions for the number of customers in the system and prove the result of stochastic decomposition of the queue length and gain the mean of the system size of positive customers.
出处 《运筹与管理》 CSCD 2008年第3期64-69,共6页 Operations Research and Management Science
基金 国家自然科学基金资助项目(70571030,10571076)
关键词 排队 稳态分布 随机分解 拟生灭过程 矩阵几何解 负顾客 反馈 工作休假 queue steady-state distributions stochastic decomposition QBD process matrix-geometric solution negative customers feedback working vacations
  • 相关文献

参考文献6

  • 1Servi L. D, Finn S.G. M/M/1 queues with working vacations (M/M/1/WV) [ J]. Performance Evaluation, 2002,50:41-52,
  • 2Wen- yuan Liu,, Xiu -li Xu, Nai- shuo Tian. Stochastic decompositions in the M/M/1 queue with working vacations[ J]. Operations Research Letters, 2007, 35:595-600.
  • 3Yutaka Baba. Analysis of a GI/M/1 queue with multlple working vacations[ J]. Operations Research Letters, 2005, 33:201- 209.
  • 4Krlshna Kumar B, Arivudalnambi D, Krishnamoorthy A. Some resuhs on a generalized M/G/1 feedback queue with negative customers[ J ]. Operations Research Letters, 2006,143:277-296.
  • 5杜贞斌,朱翼隽,肖江,陈洋.负顾客的M/G/1排队模型[J].江苏大学学报(自然科学版),2002,23(3):91-94. 被引量:20
  • 6Yang WS, Chae KC. A note on the GI/M/1 queue with Poisson negative arrivals[ J]. Journal of Applied Probability, 2001, 38:1081-1085.

二级参考文献6

  • 1[1]Gelenbe E, at al. Queues with Negative Arrivals[J].J Appl Prob, 1991(28):245-250.
  • 2[2]Harrison,Pitel. Sojourn Times in Single Server Que-ues with Negative Customers[J].J Appl Prob,1993(30):943-963.
  • 3[3]Harrison,Pitel.The M/G/1 Queue with Negative Cu-stomers[J].J Appl Prob, 1996(28):540-566.
  • 4[4]Bayer, Boxma. Wiener-Hopf Analysis of an M/G/1 Queue with Negative Customers and of a Related Cl-ass of Random Walks[J]. Queueing Systerms,1996(23):301-316.
  • 5[5]Artalejo,Corral. On a Single Service Queue with Neg-ative Arrivals and Request Repeated[J]. J Appl Prob,1999(36):907-918.
  • 6[6]Zhu Yi-jun. Analysis on a Type of M/G/1 Models with Negative Arrivals[C].Proceeding of the 27th Stochastic Process Conference, UK,2001.

共引文献19

同被引文献57

  • 1马金旺,岳德权,马明建,余君.具有备用服务员的休假可修排队系统分析[J].燕山大学学报,2009,33(2):163-168. 被引量:6
  • 2朱翼隽,马丽,曲子芳,陈燕.负顾客可服务的Geom/Geom/1离散时间排队模型[J].江苏大学学报(自然科学版),2007,28(3):266-268. 被引量:7
  • 3SERVI L D, FINN S G. M/M/1 queue with working vacations (M/M/1/WV) [J]. Perform Evaluation, 2002, 50:41-52.
  • 4LIU W Y, XU X L, TIAN N S. Stochastic decompositions in the M/M/1 queue with working vacations[J]. Operation Research Letters, 2007, 35(5) :595-600.
  • 5KRISHNA KUMAR B, ARIVUDAINAMBI D, KRISHNAMOORTHY A. Some results on a generalized M/G/1 feedback queue with negative customers[J]. Operations Research Letters, 2006, 143 (1) : 277-296.
  • 6北京大学数学系几何与代数教研室代数小组.高等代数[M].2版.北京:高等教育出版社,1978.
  • 7HARRISON P G, PITEL E. Sojourn times in single server queues with negative eustomers[J]. J Appl Prob, 1993, 30:943-963.
  • 8BOUCHERIE R J, BOXMA O J. The workload in the M/G/1 queue with work removal[J]. Probability in the Engineering and informational sciences, 1996, 10:261-277.
  • 9NEUTS M. Matrix-geometric solution in stochastic models[M]. Baltimore: Johns Hopkins University Press, 1981.
  • 10Servi L, Finn S. M/M/1 queue with working vacations (M/M/1/WV)[J]. Performance Evaluation, 2002, 50: 41-52.

引证文献11

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部