期刊文献+

基于支持向量机的中国工业增加值预测研究 被引量:6

Study on Forecast of Value-added of Industry in China Based on SVM
下载PDF
导出
摘要 工业增加值是衡量一个国家工业发展水平的重要指标。由于其受多种因素影响,对其预测相对困难。本文提出运用时间序列预测方法对其预测,并利用支持向量机和微分进化算法(differential evolution,DE)相结合的方法对中国工业增加值数据进行预测。数据仿真显示该模型比核主成分分析的最小二乘支持向量机(KPCA-LS-SVM)以及岭回归(ridge regression,RR)具有更高的预测精度。 Value-added of industry is an index to measure development of industry in a country. Its forecast is dif- ficult due to too many affecting factors. Methods based on time series are put forward in the paper and applied to forecast, with hybrid method combining support vector machine with differential evolution. The results of data simulation show the method is more accurate than that of KPCA-LS-SVM and ridge regression.
出处 《运筹与管理》 CSCD 2008年第3期88-92,87,共6页 Operations Research and Management Science
基金 国家自然科学重点基金资助项目(70433003)
关键词 工业经济 趋势预测 支持向量机 industrial economics trend forecasting support vector machine
  • 相关文献

参考文献14

  • 1Takens F. On the numerical determination of the dimension of an attractor[ A]. Rand D, Young L S, Dynamical Systems and Turbulence, Warwick, 1980, Lecture Notes in Mathematic[ C]. Springer-Verlag, 1981, 898 : 316-381.
  • 2Vapnik V, The nature of statistical learning theory[ M]. New York: Springer-Verlag, 1995.
  • 3Taeshik Shon, Yongdae Kim, Cheolwon Lee, Jongsub Moon. A machine learning framework for network anomaly detection using SVM and GA[ A]. Systems, Man and Cybernetics (SMC) Information Assurance Workshop, 2005. Proceedings from the Sixth Annual IEEE[C]. 2005, (6): 176 -183.
  • 4Zheng Chunhong, Jiao Licheng, Automatic parameters selection for SVM based on GA[ A]. Fifth World Congress on Intelligent Control and Automation[ C]. 2004, 2: 1869-1872.
  • 5Zhang Xiangrong, Liu Fang. A pattern classification method based on GA and SVM[ A]. 6th International Conference on Signal Processing[C]. 2002, 1: 110-113.
  • 6熊建秋,邹长武,李祚泳.基于免疫进化支持向量机的年用电量预测[J].四川大学学报(工程科学版),2006,38(2):6-10. 被引量:9
  • 7Storn R, Price K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces [ J]. Journal of Global Optimization, 1997, 11 : 341-359.
  • 8http ://www. stats.gov. cn/.
  • 9梁强,范英,魏一鸣.基于小波分析的石油价格长期趋势预测方法及其实证研究[J].中国管理科学,2005,13(1):30-36. 被引量:52
  • 10朱卫华,唐向宏,张福洪.小波分析在短期销售预测中的应用[J].杭州电子科技大学学报(自然科学版),2005,25(1):48-51. 被引量:4

二级参考文献64

  • 1樊福梅,梁平.基于分形的社会总用电量及其构成预测[J].中国电机工程学报,2004,24(11):91-95. 被引量:26
  • 2焦李成.神经网络计算[M].西安:西安电子科技大学出版社,1995..
  • 3彭玉华.小波变换与工程应用[M].北京:科学出版社,2000..
  • 4V. Assimakopoulos, K. Nikolopoulos, The theta model: a decomposition approach to forecasting [ J ]. International Journal of Forecasting, 2000,16: 521 - 530.
  • 5Dominguez,K. M. ,the volatility and efficiency of crude oil futures contracts [ J ]. ch. 2. In: Dominguez, K. M.,Strong, J. S. , Weiner, R. J. ( Eds. ), Oil and money: Coping with price risk through financial markets,Harvard International Energy Studies, 1989,48 - 97.
  • 6Green,S. L. Mork,K. A. Towards efficiency in the crude oil market[J]. J. Appl. Econometrics, 1991,6:45 - 66.
  • 7Crowder, W. J., Hamed, A., A cointegration test for oil futures market efficiency [ J ]. J. Future Mark, 1994, 13 (8) :933- 941.
  • 8Moosa, I. A. , al-Loughani, N. E. , Unbiasedness and time varying risk premia in the crude oil futures markets[J ].Energy Econ, 1994,16 (2): 99 - 105.
  • 9Gulen, S. G., Efficiency in the crude oil futures markets[ J ]. J. Energy Finance Dev, 1998,3 ( 1 ): 13 - 21.
  • 10Barone-Adesi ,G. , Bourgoin, F. , Giannopoulos, K. , Don' t look back[J]. Risk August, 1998,100 - 103.

共引文献80

同被引文献67

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部