期刊文献+

基于Dijkstra算法的单工序对其平行工序数量敏感性分析 被引量:2

Sensitivity Analysis of Single Activity to its Quantity of Parallel Activities Based on Activity Float
下载PDF
导出
摘要 在CPM网络计划中,一个工序开始和结束时间的变化可能不光会对它的顺序工序产生影响,也会对它的平行工序产生影响,当该工序的结束时间从最早结束时间开始推迟不同的量时,或者当它的开始时间从最迟开始时间开始提前不同的量时,它的平行工序中自由时差、安全时差或总时差增大的工序数量也可能不同。针对该单个工序对其平行工序数量敏感性问题,利用工序自由时差、安全时差和总时差的概念及功能对其进行分析,建立了某工序最早结束时间的推迟量或最迟开始时间的提前量与它的平行工序中受影响工序数之间的函数关系模型。最后,通过算例,进行了具体阐述。 In CPM ( Critical Path Method) network, variety of start and finish time in single activity may not only influence this activity' s order activities, but also influence its parallel activities, especially, when finish time of this activity defers different value from the earliest finish time of the activity, or when start time of this activity advances different value from the latest start time of the activity, and the quantity of parallel activities whose free float, safety float and total float are increased may be different. In view of sensitivity analysis of single activity to its quantity of parallel activities, by making use of the concept and function of free float, safety float and total float, the model of function relation between the tardiness of earliest finish time and the influenced quantity of parallel activities is set up, and the model of function relation between the advancement of the latest start time and the influenced quantity of parallel activities is constructed. Finally, we clarify the model with the example.
出处 《运筹与管理》 CSCD 2008年第3期153-159,共7页 Operations Research and Management Science
基金 国家自然科学基金资助项目(70671040) 教育部博士点基金资助项目(20050079008)
关键词 运筹学 函数关系模型 CPM网络计划 敏感性分析 operational research function relation model CPM network sensitivity analysis
  • 相关文献

参考文献12

二级参考文献27

  • 1周远成,乞建勋,张立辉.网络计划优化技术中顺序优化的编程模式与算法设计[J].运筹与管理,2004,13(5):47-50. 被引量:3
  • 2乞建勋.时间费用优化中松驰网络与群截面理论[J].系统工程学报,1995,10(1):113-126. 被引量:1
  • 3李星梅,乞建勋,牛东晓.三个平行序链的顺序优化决策[J].中国管理科学,2006,14(4):69-74. 被引量:5
  • 4运筹学教材编写组.运筹学[M].北京:清华大学出版社,1993.461-466.
  • 5Cline Lomow Girou 周远成译.C++经典问答.第2版[M].北京:中国电力出版社,2003..
  • 6(美国)弗雷姆 J D.郭宝柱译.新项目管理[M].北京:世界图书出版社,2001..
  • 7(美国)梅瑞狄斯 J R. 曼特尔 小塞缪尔 J 郑晟 杨磊 李兆玉等译.项目管理[M].北京:电子工业出版社,2002..
  • 8严蔚敏 吴伟民.数据结构[M].北京:清华大学出版社,1997..
  • 9冯勇.影响监理水平的因素[J].新疆农业大学学报,2001,.
  • 10Cline Lomow Girou 周远成译.C++经典问答(第二版)[M].北京:中国电力出版社,2003..

共引文献30

同被引文献23

  • 1孔峰,刘鸿雁,乞建勋.可分解工序的顺序优化方法[J].系统工程理论方法应用,2004,13(4):381-384. 被引量:2
  • 2田志友,吴瑞明,王浣尘.基于过程熵的供应商多元加工能力评价[J].管理工程学报,2006,20(1):36-40. 被引量:8
  • 3Chen H. A multivariate process capability index over a rectangular solid tolerance zone[J]. Statistical Sinica, 1994,4: 749-758.
  • 4Shariari H, Hubele N F, Lawrence F P. A multivariate process capability vector[J]. Proceedings of the 4th Industrial Engineering Research Conference,Nashville, T. N., 1995:303 308.
  • 5Veevers A. A Capability Index for Multiple Response, CSIRO Mathematics and Statistics Report DMS095, Australia, 1995.
  • 6Taam W, Subbaiah P, Liddy J W. A note on multivariate capability indices[J]. Journal of Applied Statistics, 1993,20: 339-351.
  • 7徐玖平,胡知能,王绥.运筹学(Ⅰ类)[M].北京:科学出版社,2007,9:129-136.
  • 8Bowman R A. Efficient sensitivity analysis of PERT network performance measures to significant changes in activity time parameters[J]. Journal of the Operational Research Society, 2007, 58(10): 1354 1360.
  • 9Meng Q, Wang X B. Sensitivity analysis of logit-based stochastic user equilibrium network flows with entry-exit toll schemes[J]. Computer-Aided Civil and Infrastructure Engineering, 2008, (23): 138-156.
  • 10Cho J G, Yum B J. Functional estimation of activity criticality indices and sensitivity analysis of expected project completion time[J]. Journal of the Operational Research Society, 2004, 55(8): 850-859.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部