摘要
通过模拟柴油机气阀间隙的异常进行试验,采集缸盖表面的振动信号.利用时间序列分析方法对振动信号进行分析,并建立相应的AR(AutoRegressive)模型,从中提取不同气阀间隙下的敏感参数.最后,基于这些敏感参数,利用神经网络进行气阀间隙的识别.分析结果表明,将两种方法的融合,能够实现优势互补,达到更好的识别效果.
By simulating the abnormal clearance of the diesel engine valves, some vibration signals are collected, and the lime series analysis is used to analyze these signals, some sensitive parameters of the different valve clearance are selected At last, based on these parameters, neural networks are used to identify the fault model of the valve clearance. The analysis conclusion indicated that better identification effect can be reached by integrating the two methods.
出处
《船舶工程》
CSCD
北大核心
2008年第3期50-52,共3页
Ship Engineering
基金
浙江省教育厅科研项目(编号:20050116)
浙江省高校青年教师资助项目
关键词
柴油机
气阀间隙识别
时间序列分析
神经网络
diesel engine
valve clearance identification
lime series analysis
neural networks