期刊文献+

支持向量回归机在物价预测上的应用 被引量:1

Application of Support Vector Machine in Prediction of Consumer Price Index
下载PDF
导出
摘要 把时间序列SVM预测模型应用于物价指数的预测,采用逐步递归的方法进行,同时注意尽量减少训练样本的浪费和充分挖掘SVM模型适合短期预测的潜力。分析结果表明,无论是拟合情况,还是预测值的检验和物价指数的实际规律来看,都有很高的精度,可以作为物价指数预测的一种行之有效的方法。 Using in prediction of Consumer Price Index, the recursive step-by-step method, taking care to minimize waste of training samples and fully tapping SVM model, the SVM time series forecasting model is suitable for short-term forecasts of potential. The results show that, whether it is fitting, or predictive value of the test and according to the actual price index of view, it has high accuracy.It can be an effective forecasting method as prediction of consumer price index.
作者 纪娟
出处 《现代计算机》 2008年第6期64-66,69,共4页 Modern Computer
关键词 物价指数 SVM网络模型 训练样本 预测 Consumer Price Index SVM Network Model Train Samples Prediction
  • 相关文献

参考文献5

二级参考文献32

  • 1Cortes C, Vapnik V N. Support vector networks[J]. Machine Learning, 1995,20. 273-295.
  • 2Vapnik V N. The nature of statistical learning theory[M]. New York:Springer-Verlag,1995.
  • 3Vapnik V N, Golovrich S E, Smola A. Support vector method for function approximation, regression estimation, and signal processing[A]. In Advances in Neural information processings systems 8 [C]. San Mateo,CA Morgan Kaufmann Publishers, 1996.
  • 4Sholkopf B, Sung K, Burges C J C, et al.Comparing support vector machine with Gaussian Kernels to radial basis function classifiers[A]. IEEE Trans. Signal Processing, 1997, 45: 2758-2765.
  • 5Mukherjee S, Osuma E, Girosi F. Nonlinear prediction of chaotic time eeries using support vector machines[J]. Neural Networks for Signal Processing Ⅶ, 1997: 511-520.
  • 6Mckay D, FyIe C. Probability prediction using Support Vector Machine[A]. Proceedhags of Fourth International Conference in Knowledge-Based Intelligent Engineering Systems & Allied Technologies [C]. 2000:189-192.
  • 7ZHUJ Y, REN B, ZHANG H X, et al.Time series prediction via new support vector machlne[A]. Proceedings of the First International Conference on Machine Learning andCyberneties[C]. 2002;364-366.
  • 8Takens F. Detecting strange attractions in fluid turbulence[A]. In I3. Rand and L. S.Young, editors, Dynamical System and Turbulence[C]. Berlin: Springer-Verlag, 1981.
  • 9Chen P. Complex dynamics in economic organisms: The Origin of Division of Labor and The Nature of Persistent Business Cycles[J], CCER Working Paper, No. E1999015,Peking University(1999c).
  • 10Holland J H. Adaptation in nature and artificial systems EM]. MIT: The University of Michigan Press, 1975, 1992.

共引文献160

同被引文献11

  • 1肖智,陈婷婷.基于支持向量机的外贸出口预测[J].科技管理研究,2006,26(7):231-234. 被引量:14
  • 2林红华.上市公司财务危机预测的最小二乘支持向量机方法研究[J].商场现代化,2006(10S):346-348. 被引量:2
  • 3Burges J C C .Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
  • 4Clements P M, Franses H P, Swanson R N. Forecasting Economic and Financial Time-series with Non-linear Models [J]. International Journal of Forecasting, 2004, 20(2): 169- 183.
  • 5Guillaume C, Hendry F D. Non-parametric Direct Multistep Estimation for Fore-casting Economic Processes[J]. International Journal of Forecasting, 2005, 21 (2): 201-218.
  • 6Lean Yu, Huanhuan Chen, Shouyang Wang, et al. Evolving Least Squares Support Vector Machines for Stock Market Trend Mining[J]. IEEE Transactions on Evolutionary Computation, February 2009, 13(1): 87-102.
  • 7Neumann J, Schnorr C, Steidl G. Combined SVM-Based Feature Selection and Classification[J]. Machine Learning, 2005, 61(1): 129-150.
  • 8Yubo Yuan, Chunzhong Li. A New Smooth Support Vector Machine[J]. Lecture Notes in Artificial Intelligence, 2005, 3801: 392-397.
  • 9Yuh-Jye Lee, Mangarasian OL. SSVM: A Smooth Support Vector Machine for Classification[J]. Computational Optimization and Applications, 2001, 20(1): 5-22.
  • 10道琼斯指数网站(http://www.djindexes.com).

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部