期刊文献+

关于q-Bernstein多项式及其Boole和迭代

Onq-Bernstein Polynomial and it's Iterated Boolean Sum
下载PDF
导出
摘要 本文对q-Bernstein多项式Bn(f,q,x)收敛于B∞(f,q,x)的加速问题进行研究,同时对其Boolean和迭代的收敛性问题进行考虑.采用精细估计,并应用光滑模理论等手段,得到相应的逼近速度估计.结果表明:q-Bernstein多项式在这两个问题上与传统Bernstein多项式有着类似的结果. In this paper,we investigate not only the acceleration proble about the q-Bernstein polynomial but also the convergence of it's iterated Boolean sum. Using the methods of exact estimate and theories of moduli of smoothness,we get the approximation rates which suggest that q- Bernstein polynomial has the similar answer with the classical Bernstein polynomial to these two problems,and reach a result similar with the classical Bernstein polynomial.
作者 云连英
出处 《应用数学》 CSCD 北大核心 2008年第3期524-528,共5页 Mathematica Applicata
关键词 q-Bernstein多项式.加速 Boolean和迭代 收敛速度 q- Bernstein polynomial Aeeeleration Iterated Boolean sum Conver-genee rate
  • 相关文献

参考文献8

  • 1Phillips G M. Bernstein polynomials based on the q-integers[J]. Ann. Numer. Math. , 1997, (4): 511-518.
  • 2Osrovska Sofiya. q- Bernstein polynomials and their iterates[J]. J. Approx. Theory, 2003,123 : 232 - 255.
  • 3Gonska H H,Zhou X L. Approximation theorems for the iterated Boolean sums of Bernstein operators [J]. J. Comput. Appl. Math. ,1994,53:21-23.
  • 4Videnskii V S. On some classes of q- parametric positive linear operators[J]. Oper. Theory Adv. Appl. , 2005.158 : 213-222.
  • 5Il'inskii A,Osrovska S. Convergence of generalized Bernstein polynomials[J]. J. Approx. Theory, 2002, 116:100-112.
  • 6Wang Heping. The rate of convergence of q- Bernstein polynomials for 0<q <1 [J]. J. Approx. Theory, 2005,136: 151 - 158.
  • 7Wang H P. Voronovskaya-tpye formulas and saturation of convergence for q- Bernstein polynomials for 0 <q <1 [J]. J. Approx. Theory,2007,1,15: 182-195.
  • 8Xie Tingfan. Zhou Songping. Approximation of Realfunctions[M]. Hangzhou: Hangzhou Univ. Press, 1998.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部