期刊文献+

一类二阶中立型泛函微分方程的无穷多个次调和周期解 被引量:4

Infinite Subharmonic Periodic Solutions to a Class of Second-order Neutral Differential Equations
下载PDF
导出
摘要 本文通过变分原理和Z2不变群指标,得出了下述二阶中立型泛函微分方程存在无穷多个次调和周期解的充分条件(p(t)(μx′(t))+x′(t-τ)+μx′(t-2τ))′-q(t)x(t)+f(t,x(t),x(t-τ),x(t-2τ))=0,|μ|<1/2. In this paper,by critical point and Z2- group index theory,we obtain infinite subharmonic periodic solutions to second-order nonlinear non-autonomous Sturm-Liouville neutral functional differential equations (p(t(μx′)(t))+x′(t-τ)+μx′(t-2τ))′-q(t)x(t)+f(t,x(t),x(t-τ),x(t-2τ))=0,|μ|〈1/2.
作者 舒小保 王密
出处 《应用数学》 CSCD 北大核心 2008年第3期542-547,共6页 Mathematica Applicata
基金 湖南省博士后基金(2006FJ4249) 广东省自然科学基金(031608) 国家自然科学基金(10471155)
关键词 Z2不变群指标 中立型泛函微分方程 临界点 周期解 Z2- group index theory Neutral nonlinear functional differential equations Critical points Periodic solutions
  • 相关文献

参考文献4

  • 1Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems[M]. New York: Spinger-Verlag, 1989.
  • 2Han Zheng-chao. Periodic solutions of a class of dynamical systems of second order[J]. Journal of Differential Equations, 1991,90:408 - 417.
  • 3陆文瑞.微分方程中的变分方法[M].北京:科学出版社,2003.
  • 4舒小保,徐远通.一类二阶混合型泛函微分方程多重周期解[J].应用数学学报,2006,29(5):821-831. 被引量:8

二级参考文献1

共引文献9

同被引文献20

  • 1Shu Xiaobao Xu Yuantong.INFINITE PERIODIC SOLUTIONS TO A CLASS OF SECOND-ORDER NEUTRAL DIFFERENTIAL EQUATIONS[J].Annals of Differential Equations,2005,21(3):397-402. 被引量:2
  • 2舒小保,徐远通.一类二阶混合型泛函微分方程多重周期解[J].应用数学学报,2006,29(5):821-831. 被引量:8
  • 3刘淑媛,吕显瑞,齐毅.求Duffing方程周期解的Mountain Pass方法[J].吉林大学学报(理学版),2007,45(4):519-523. 被引量:6
  • 4S.Ma,Z,Wang.J.Yu.Coincidence degree and periodic solutions of Duffing equations[J].Nonlinear Analysis,1998(34):443-460.
  • 5Guo Zhiming,Xu Yuantong.Existence of Periodic Solutions to a class of Second-order Neural Difference Equations[J].Acta Anal Funct.Appl,2003(5):13-19.
  • 6Mawhin J,Willem M.Critical Point Theory and Hamitionian Systems[M].New York:Springer-verlag,1989.
  • 7Z.M.Guo,J.S.Yu.Multiplicity results for periodic solutions to delay differential equations via critial point theory[J].J.Differential Equations,2005(28):15-35.
  • 8Ma S, Wang Z, Yu J. Coincidence degree and periodic solutions of Duffing equations. Nonlinear Analysis, 1998, 34:443-460.
  • 9Shu X B, Tong Y T, Huang L H. Infinite periodic solutions to a class of second-order Sturm-Liouville neutral differential equations. Nonlinear Analysis, 2008, 68:905-911.
  • 10Guo Z M, Yu J S. Multiplicity results for periodic solutions to delay differential equations via critial point theory. J. Differential Equations, 2005, 28:15-35.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部