期刊文献+

中立型随机泛函微分方程的有界性(英文)

Boundedness for Neutral Stochastic Functional Differential Equations
下载PDF
导出
摘要 本文主要讨论了中立型随机泛函微分方程的有界性.我们得到的结果本质上也是一种随机的LaSalle定理. The main aim of this paper is to establish some criteria on the boundedness for neutral stochastic functional differential equations. These new results can be considered as some kinds of stochastic LaSalle-type theorems.
出处 《应用数学》 CSCD 北大核心 2008年第3期622-628,共7页 Mathematica Applicata
基金 the National Natural Science Foundation of China(10671078) Huazhong Uviversity of Science and Technology Foundation(0125011017)
关键词 有界性 半鞅收敛定理 LaSalle定理 ITO公式 Boundedness Semimartingale convergence theorem LaSalle-type theorem Ito's formula
  • 相关文献

参考文献10

  • 1i Arnold L. Stochastic Differential Equations: Theory and Applications[M]. New York: Wiley, 1972.
  • 2Hale J K, Lunel S M V. Introduction to Functional Differential Equations[M]. New York: Springer, 1993.
  • 3Mao X. Stochastic Differential Equations and Applications[M]. Chichester:Horwood, 1997.
  • 4LaSalle J P. Stability theory of ordinary differential equations[J]. J. Differential Equations, 1968,4:57 - 65.
  • 5Mao X. Stochastic versions of the LaSalle theorem[J]. J. Differential Equations, 1999,153:175 - 195.
  • 6Mao X. LaSalle-type theorems for stochastic differential delay equations[J]. J. Math. Anal. Appl. , 1999, Z36:350-369.
  • 7Mao X. The LaSalle-type theorems for stochastic functional differential equations[J]. Nonlinear Stud. , 2000,7:307 - 328.
  • 8Mao X. A note on the LaSalle-type theorems for stochastic differential delay equations[J]. J. Math. Anal. Appl., 2002,268:125-142.
  • 9Mao X. Attraction,stability and boundedness for stochastic differential deay equations[J]. Nonlinear Anal. , 2001,47 : 4795 - 4806.
  • 10Liptser R Sh,Shiryayev A N. Theory of Martingales[M]. Dordrecht: Kluwer Academic, 1989.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部