期刊文献+

高维映射的Hopf-pitchfork分岔及其在碰撞振动系统中的应用 被引量:3

Hopf-pitchfork Bifurcation of High Dimensionalmaps with Applications to Vibro-impact Systems
下载PDF
导出
摘要 研究了高维映射的Hopf-pitchfork分岔。通过中心流形理论,将高维映射降阶为一个三维映射,再通过范式方法将降阶后的三维映射转化为范式映射。理论分析了三维范式映射在Hopf-pitchfork分岔点附近的参数开折。通过对分岔点附近含间隙振动系统的分岔行为进行数值仿真,验证了理论结果。 Hopf-pitchfork bifurcation of high dimensional maps is dealt with here. When a real eigenvalue of the Jacobian matrix of the map at fixed point gets beyond the value +1 and a pair of complex conjugate eigenvalues cross the unit circle simultaneously, the high-dimensional map is reduced to a three-dimensional map by the center manifold theorem. The reduced map is further transformed into its normal form following the theory of normal forms. The two-parameter unfolding of the map near the point of Hopf-pitchfork bifurcation is investigated analytically. The numerical simulation results indicate that the vibro-impact system demonstrates a complicated dynamic behavior.
机构地区 西南交通大学
出处 《应用力学学报》 EI CAS CSCD 北大核心 2008年第2期268-273,共6页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金项目(10472096 50675092)
关键词 映射 碰撞振动 Hopf-pitchfork分岔 混沌 maps, vibro-impact, Hopf-pitchfork bifurcation, chaos
  • 相关文献

参考文献2

二级参考文献24

  • 1谢建华,全国第3届运动稳定性与振动学术会议论文集,1992年
  • 2舒周仲,Acta Mech Sin,1991年,7卷,4期,369页
  • 3Tung P C,J Vibration Acoustics,Stress and Reliability in Design,1988年,110卷,4期,193页
  • 4Wan Y H,SIAM J Appl Math,1978年,34卷,1期
  • 5Iooss, G.: Bifurcations of maps and applications. Amsterdam:North-Holland, 1979.
  • 6Wan, Y.H.: Bifurcation into invariant tori at points resonance.Archive for Rational Mechanics Analysis, 68:343-357 (1978).
  • 7Chenciner, A.: Bifurcation de point fixes elliptiques I, Courbes invariants. Publications Mathematiques, Institut des Hautes Etudes Scientifiques, 61: 67-127 (1985).
  • 8Guckenheimer, J., Holmes, EJ.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer-Verlag, 1983.
  • 9Los, J.E.: Non-normally hyperbolic invariant curves for maps in R^3 and doubling bifurcation. Nonlinearity, 2( 1 ): 149-174 (1989).
  • 10Iooss, G., Los, J.E.: Quasi-genericity of bifurcations to high dimensional invariant tori for maps. Communications in Mathematical Physics, 119:453-500 (1988).

共引文献43

同被引文献15

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部