期刊文献+

基于位移插值的Voronoi单元有限元方法 被引量:7

Voronoi Cell Finite Element Method Based on Displacement Interpolation
下载PDF
导出
摘要 Voronoi单元有限元法是模拟颗粒增强复合材料非常先进有效的数值方法之一。为了克服它在构造插值函数时的困难,本文通过有限覆盖技术,对Voronoi单元进行了改进,提出了基于位移插值的Voronoi单元有限元方法,该方法的优点是只要知道夹杂中心点位置和Voronoi单元节点坐标,经过三次数学覆盖,即可形成Voronoi单元的位移插值函数。该方法形函数构造简单,容易实施。最后给出了数值模拟算例,并与现有的方法进行了比较。 Voronoi cell finite element method (VCFEM) is one of the most efficient methods for simulating particle-reinforced composites. To solve the difficulty in constructing interpolation functions, VCFEM is improved by finite cover technique, and a Voronoi cell finite element method based on displacement interpolation is proposed. Giving nodal coordinates of Voronoi cell and central coordinates of particles, the displacement interpolation functions can be formulated by three mathematical covers, where the shape functions get simple and easy to construct.
出处 《应用力学学报》 CAS CSCD 北大核心 2008年第2期342-346,共5页 Chinese Journal of Applied Mechanics
基金 山东省优秀中青年科学家奖励基金(2007BS04045)
关键词 颗粒增强 复合材料 有限覆盖技术 Voronoi单元 数值模拟 particle-reinforced, composites, finite cover technique, voronoi cell, numerical simulation
  • 相关文献

参考文献8

  • 1Leon L Mishnaevsky Jr,Siegfried Schmauder,陈少华,魏悦广.在材料研制中的连续介质细观力学有限元建模现状评论[J].力学进展,2002,32(3):444-466. 被引量:9
  • 2Ghosh S, Mukhopadhyay S N. Material based finite element analysis of heterogeneous media involving dlrlchlet tessellations [J]. Computer Methods in Applied Mechanics and Engineering, 1993, 104: 211-247.
  • 3Plan T H H. Derivation of element stiffness matrices[J]. AAIA Journal, 1964,2:576-577.
  • 4Ghosh S, Moorthy S. Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi-cell finite-element method[J]. Computers and Mathematics with Application M, 1995, 121(1/4): 373-409.
  • 5Ghosh S, Lee K H, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi-cell finite-element method [J]. International Journal of Solids and Structures, 1995, 32(1): 27-62.
  • 6Moorthy S, Ghosh S. Model for analysis of arbitrary composite and porous microstructures with Voronni-cell finite elements[J]. International Journal for Numerical Methods in Engineering, 1996, 39(14):2363-2398.
  • 7Li M S, Ghosh S, Rouns T N. Serial sectioning method in the construction of 3-D microstructures for particle-reinforced [J]. Materials Characterization, 1998, 41(2/3) : 81-95.
  • 8石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997..

二级参考文献124

  • 1[1]Mishnaevsky Jr L. A new approach to the analysis of strength of matrix composites with high content of hard filler. J App Composite Mat, 1995, 1:317~324
  • 2[2]Mishnaevsky Jr L, Lippmann N, Schmauder S, Gumbsch P. In-situ observations of damage evolution and fracture in A1Si cast alloys. Eng Fracture Mech, 1999a, 63(4): 395~411
  • 3[3]Mishnaevsky Jr L, Dong M, Hohnle S, Schmauder S. Computational mesomechanics of particle-reinforced composites. Comput Mat Sci, 1999b, 16(1-4): 133~143
  • 4[4]Kanzaki S, Shimada M, Komeya K, Tsuge A. Recent progress in the synergy ceramics project. Key Eng Mat,1999, 161-163:437~,442
  • 5[5]Needleman A. Computational mechanics at the mesoscale. Acta Mat, 2000, 48(1): 105~124
  • 6[6]Panin V (ed). Physical Mesomechanics of Heterogeneous Media and Computer-Aided Design of Materials.Cambrige Int Sci Publ, 1998
  • 7[7]Raabe D. Computational Materials Science the Simulation of Materials Microstructures and Properties. WileyVCH, Weinheim, 1998
  • 8[8]Ferziger J H. Numerical Methods for Engineering Application. New York: Wiley, 1981
  • 9[9]Chen L. Computer Simulation and Prediction of Thermal Stress and Final Distortion in Quenching Processes,http://www.cse.ogi.edu/~leochen/quench_rev/qualify, html, 1996
  • 10[10]Zienkiewicz O C. Finite Element Method. London: McGraw-Hill, 1986

共引文献151

同被引文献48

  • 1姜芳,宁建国.有界面脱粘时颗粒增强金属基复合材料的弹塑性性能分析[J].材料工程,2006,34(z1):366-369. 被引量:5
  • 2聂国隽,仲政.用微分求积法求解梁的弹塑性问题[J].工程力学,2005,22(1):59-62. 被引量:26
  • 3李光耀,周汉斌.变厚度簿板弯曲问题的任意网格差分解法[J].应用数学和力学,1993,14(3):281-286. 被引量:9
  • 4杨杰,彭建设.摄动DQ法分析板的大挠度热弯曲[J].工程力学,1996,13(3):86-92. 被引量:7
  • 5Bellman R, Casti J. Differential Quadrature and Long-term Integration[J ]. Journal of Math Analysis and Applications, 1971, 34(2) :235-238.
  • 6Cortinez V H. DQM for Vibration Analysis of Composite Thin-walled Curved Beams[J ]. Journal of Sound and Vibration, 2001, 246(3) :551-555.
  • 7Ming-hung Hsu. Vibration Analysis of Edge-cracked Beam on Elastic Foundation with Axial Loading Using the Differential Quadrature Metbod[J ]. Comput Methods Appl Mech Engrg, 2005,194(1) : 1-17.
  • 8Malekzadeha P, Karamib G. Polynomial and Harmonic Differential Quadrature Methods for Free Vibration of Variable Thickness Thick Skew Plates[J]. Engineering Structures 2005,27(8) : 1563-1574.
  • 9Claudio Franciosi, Stefania Tomasiello. Static Analysis of a Bickford Beam by Means of the DQEMIJ ]. International Journal of Mechanical Sciences, 2007,49( 1 ) : 122-128.
  • 10Shu C, Wu W X, Ding H, et al. Free Vibration Analysis of Plates Using Least-square-based Finite Difference Method[J ]. Computer Methods in Applied Mechanics & Engineering, 2007,10( 1 ) : 128-137.

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部