期刊文献+

基于模式识别的航空发动机燃油控制系统传感器故障诊断 被引量:2

Fault Diagnosis of Fuel Control System Sensor for Aeroengine Based on Pattern Recognition
下载PDF
导出
摘要 航空发动机燃油控制系统执行机构故障有可能导致参数测量传感器出现较大偏差,而采用传统的传感器故障诊断方法易误诊为传感器故障。为此,引入修正因子作为传感器故障模式样本,通过聚类分析获得样本的特征向量;按照卡洛南—路伊变换(K—L变换)原理,对传感测量信息进行变换,构成了新的正交变换矩阵,减弱了各特征向量的相关性,突出了差异性,加强了对故障传感器和发动机燃油控制系统执行机构故障的特征识别能力;利用多组学习训练样本,设计了发动机不同参数测量传感器故障模式的判别函数。经仿真试验验证,该方法可以有效识别、诊断传感器故障。 The actuator fault of fuel control system for aeroengine could cause greater deviation of the parameter measurement sensor, but sensor fault was easily misdiagnosed by adopting the traditional sensor fault diagnosis method. Therefore, the correction factor was introduced as the sensor fault pattern sample, and the sample feature vector was obtained through the clustering analysis. Based on the Karhunen -Loeve transform (K- L transform) theory, the sensor measurement information was transformed to form the new orthogonal transfer matrix, weaken the correlation of the dif- ferent feature vectors, make the variability outstanding , and strengthen the features recognition ability of the fault sensor and engine fuel control system actuator fault. The discriminant functions of different parameter measurement sensor fault patterns were designed for the aeroengine by using multi - group studying and training samples. The method can effectively recognize and diagnose the sensor fault through the simulation experimental validation.
作者 张洪生
出处 《航空发动机》 2008年第2期43-45,38,共4页 Aeroengine
关键词 模式识别 故障诊断 传感器 航空发动机 燃油控制系统 pattern recognition fault diagnosis sensor aeroengine fuel control system
  • 相关文献

同被引文献23

  • 1刘敏林,刘伯运,常汉宝.三向加速度传感器故障诊断方法研究[J].振动工程学报,2004,17(z1):323-325. 被引量:2
  • 2孙涛,李本威,李忠东,马力.人工神经网络在某型航空发动机故障诊断中的应用[J].航空发动机,2004,25(3):52-55. 被引量:1
  • 3彭靖波,谢寿生.Elman回归神经网络在航空发动机故障诊断中的应用[J].航空发动机,2007,33(2):46-48. 被引量:2
  • 4徐涛,王祁.基于模式识别的传感器故障诊断[J].控制与决策,2007,22(7):783-786. 被引量:14
  • 5那文波,李磷.机器人速度传感器故障诊断方法研究[c]//第四届全国先进制造设备与机器人技术高峰论坛论文集.哈尔滨.[出版者不详],2008:94-98.
  • 6MA Tian-bing, ZHANG Xin. Diagnosis of sensor fault based on wavelet packet and RBF neural network [C]// Proceedings of The Third International Symposium on Yest Automation & Instrumentation. Xiamen, China: [s. n. ], 2010:1219-1223.
  • 7WEI X K,VERHAEGEN M, VAN E T. Sensor fault de- tection and isolation for wind turbines based on subspace identification and Kalman filter techniques [J]. International Journal of Adaptive Control and Signal Processing, 2010, 25(8) : 687-707.
  • 8边肇祺,张学工.模式识别[M].2版.北京:清华大学出版社.1999.
  • 9YE Zhifeng,SUN Jianguo. Simulation investigation of aeroengine fault diangosis using neural networks[J].Transactions of Nanjing University of Aeronautics & Astronau,2001,(2):157-163.
  • 10廉筱纯;吴虎.航空发动机原理[M]{H}西安:西北工业大学出版社,2005152-165.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部