期刊文献+

图的边集亏数的插值定理

An Interpolation Theorem on the Sub-edge-set’s Deficiency
下载PDF
导出
摘要 类似于最大亏格计算公式中的Betti亏数的计算方法,利用Nebesky给出的Betti亏数的计算公式,证明了图G的边集亏数ξ(G,A)的内插定理,推广了已有的结果. This paper first investigates an interpolation theorem on the number of odd components of co-tree in a connected graph according to the calculation method of Betti deficiency of a graph. Then it gives another interpolation theorem on sub-edge-set's deficiency according to the equation of Betti deficiency given by Nebesky and generalizes the already known results.
作者 吕长青
机构地区 枣庄学院数学系
出处 《临沂师范学院学报》 2008年第3期23-26,共4页 Journal of Linyi Teachers' College
基金 山东省自然科学基金资助(Q2007G02)
关键词 亏格 BETTI亏数 边子集亏数 genus Betti deficiency sub-edge-set's deficiency
  • 相关文献

参考文献1

二级参考文献4

  • 1Duke R A. The Genus, Regional Number, and Betti Number of a Graph. Canad. J. Math., 1966,18:817-822.
  • 2Xuong N H. How to Determine the Maximum Genus of a Graph. Journal of Combinatorial Theory(Series B), 1979, 26:217-225.
  • 3Liu Yanpei. The Maximum Orientable Genus of a Graph. Scientia Sinical, Special Issue on Math.,1979, Ⅱ: 41-55.
  • 4Tian Feng, Ma Zhongfan. Graphs and Network Flow Theory. Beijing: Science Press, 1987 (in Chinese).

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部