期刊文献+

基于神经网络的离心泵汽蚀性能预测 被引量:4

Prediction on cavitation performance of centrifugal pumps based on artificial neural network
下载PDF
导出
摘要 介绍了离心泵汽蚀性能预测的研究现状,分析了离心泵汽蚀性能预测的主要研究方法.根据设计流量下离心泵汽蚀余量的影响因素,确定人工神经网络的拓扑结构.应用MATLAB的神经网络工具箱,建立单级单吸离心泵汽蚀性能预测的BP神经网络(Back Propagation Neural Network)和RBF神经网络(Radial Basis Function Neural Network)两种人工神经网络模型.用工程实践中得到的57台离心泵几何参数和试验数据作为样本来训练建立好的网络,并用6台离心泵的数据来测试网络.预测值与试验值的相关性分析表明,BP和RBF网络的预测结果均较好,其中BP网络预测模型的平均相对偏差为5.69%,RBF网络预测模型的平均相对偏差为6.32%,可满足工程应用的要求. The current status and principal methods for predicting the cavitation performance of centrifugal pumps were presented. Topological structures of artificial neural networks were determined and network models for predicting cavitation performance of centrifugal pumps were established by analyzing the relations between geometric parameters of centrifugal pumps and net positive suction head at rated flow rate, based on the neural network toolbox of MATLAB. The BP and RBF neural networks were trained by 57 example dates, which were obtained from engineering practice, and tested respectively by 6 sets products. The correlation between the predicted and tested values were analyzed by using linear regression method. Results show that the predictions by those two neural networks are satisfied, and the average declination of BP and RBF are 5.69% and 6.32% respectively .
出处 《排灌机械》 2008年第3期15-18,共4页 Drainage and Irrigation Machinery
基金 国家自然科学基金资助项目(50509009) 国家“863”计划项目(2006AA05Z250)
关键词 离心泵 汽蚀性能 预测 神经网络 网络模型 centrifugal pump cavitation performance prediction artificial neural network network model
  • 相关文献

参考文献8

  • 1Medvitz R B, Kunz R F, Boger D A, et al. Performance analysis of cavitating flow in centrifugal pumps using multiphase CFD [ J ]. Journal of Fluids Engineering, 2002, 124:377 - 383.
  • 2Kelecy F J. Numerical prediction of cavitation in a centrifugal pump [ J ]. QNET-CFD Network Newsletter ,2003, 2(3) :14 - 16.
  • 3王福军,黎耀军,王文娥,丛国辉,王利萍.水泵CFD应用中的若干问题与思考[J].排灌机械,2005,23(5):1-10. 被引量:95
  • 4何希杰,干禧民,黄鹏,张爱习.叶片泵汽蚀余量的计算方法[J].河北工程技术高等专科学校学报,2001(3):1-2. 被引量:2
  • 5聂书彬,关醒凡,刘厚林.利用人工神经网络预测离心泵性能的探索[J].水泵技术,2002(5):16-18. 被引量:11
  • 6丛小青,袁寿其,袁丹青,张兵.基于改进BP神经网络的离心泵性能预测[J].农业机械学报,2006,37(11):56-59. 被引量:12
  • 7Panda S S, Chakraborty D, Pal S K. Flank wear prediction in drilling using back propagation neural network and radial basis function network [ J ]. Applied Soft Computing, 2008, 8 ( 2 ) : 858 - 871.
  • 8Rajakarunakaran S, Venkumar P, Devaraj D, et al. Artificial neural network approach for fault detection in rotary system[J] .Applied Soft Computing,2008, 8( 1 ) :740 - 748.

二级参考文献51

  • 1张兵,袁寿其,成立,袁建平,从小青.基于L-M优化算法的BP神经网络的作物需水量预测模型[J].农业工程学报,2004,20(6):73-76. 被引量:50
  • 2徐朝晖,吴玉林,陈乃祥,刘宇,张梁,吴玉珍.基于滑移网格与RNG湍流模型计算泵内的动静干扰[J].工程热物理学报,2005,26(1):66-68. 被引量:51
  • 3王福军.CFD在水力机械湍流分析与性能预测中的应用[J].中国农业大学学报,2005,10(4):75-80. 被引量:55
  • 4陈际先.人工神经网络[M].镇江:江苏大学农机教研室,2002..
  • 5王万森.人工智能原理及其应用[M].北京:电子工业出版社,2001..
  • 6Muggli F A, Holbein P, Dupont P. CFD calculation of a mixed flow pump characteristic from shutoff to maximum flow. Journal of Fluids Engineering, Transactions of the ASME, 2002, 124(3): 798~802.
  • 7Andersen M R, Gu Fahua, MacLeod P D. Application and validation of CFD in a turbomachinery design system.Porceedings of the ASME Process Industries Division, 2003,21~32.
  • 8Muller N, Einzinger J, Lepach T, Kramer S, Thum S,Schilling R. Application of a multi level CFD-technique for the design optimisation of hydraulic machinery bladings.Proceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference 2004, v2: 601~608.
  • 9Majidi Kitano. Numerical study of unsteady flow in a centrifugal pump. Journal of Turbomachinery, 2005, 127(2):363~371.
  • 10Hornsby Craig. CFD-Driving pump design forward. World Pumps, 2002, 431:18~22.

共引文献109

同被引文献54

引证文献4

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部