期刊文献+

基于协调运动控制的摇臂式探测车路径多属性决策 被引量:2

Multi-attribute decision making on the path of rocker rover based on converted motion control
下载PDF
导出
摘要 为保证探测车行驶路径节能、快速、安全,在协调运动控制的基础上,对多条待选路径进行多属性决策。根据六轮摇臂式探测车的准静力学模型和基于速度投影定理的运动学模型计算协调运动控制的目标转矩和目标转速。根据摇臂式移动系统的被动变形适应性计算探测车处于任意地形时摇臂的摆角,建立了地形参数与协调运动控制参数之间的关系。在此基础上,计算各条待选路径对通过路径所需能量、通过路径所需时间、路径地形起伏状况和路径长度等属性的属性值。利用TOPSIS法进行多属性决策,从中选择最优路径。数值仿真结果表明,多属性决策系统所选择的最优路径,兼顾节能、快速、安全等因素,避免了单属性决策的片面性。 Based on concered motion control of six-wheeled rocker rover, in order to ensure safe, rapid and low in energy consumption paths, a multi-attribute decision making was taken for some chosen paths. According to konematics analysis on the basis of the velocity projection theorem and quasistatic model, the objective torsion and rotate speed were calculated. Rocker pitch angles of the rover in random terrain were also calculated according to the character of passively shape shifting adaptive suspension. Therefore the ralationship beween path figures and objective driving parameters was built. Then the attributes of the paths the are energy consumption, time consumption, path terrain feature and lenth were calculated and the optimal path was selected by using TOPSIS multi-attribUte decision making method. Simulation results indicate that this optimal path is efficient, rapid and safty and can avoid parochialism in single attribute decision making system.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第4期930-935,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(50375032) 高等学校学科创新引智计划项目(B07018) 长江学者和创新团队发展计划项目
关键词 机器人技术 路径决策 TOPSIS多属性决策 六轮摇臂式探测车 协调运动控制 robot technology path decision TOPSIS multi-attribute decision making six-wheeled rocker rover concerted motion control
  • 相关文献

参考文献9

二级参考文献25

  • 1团体著者,汽车百科全书,1981年,1003页
  • 2余志生,汽车理论,1981年,276页
  • 3Salomon B, Garber M, Lin M C, et al. Interactive navigation in complex environments using path planning[C]//Proceedings of Symposium on Interactive 3D Graphics, Monterey, California, 2003: 41-50
  • 4Christie M, Languénou E, Granvilliers L. Modeling camera control with constrained Hypertubes[C]//Proceedings of the 8th International Conference on Principles and Practice of Constraint Programming, Ithaca, NY, 2002: 618-632
  • 5Nieuwenhuisen D, Overmars M. Motion planning for camera movements in virtual environments[R]. Utrecht: Utrecht University, UUCS-2003-004, 2003
  • 6Drucker S, Zeltzer D. Intelligent camera control in a virtual environment[C]//Proceedings of Graphics Interface, Banff, Albeta, 1994: 190-199
  • 7Bares W H, Grgoire J, Lester J. Real-time constraint-based cinematography for complex interactive 3D worlds[C]//Proceedings of the 10th Conference on Innovative Applications of Artificial Intelligence, Madison, Wisconsin, 1998: 1101-1106
  • 8Herman M. Fast, three-dimensional, collision-free motion planning[C]//Proceedings of IEEE International Conference on Robotics and Automation. Los Angeles: IEEE Computer Society Press, 1986: 1056-1063
  • 9Latombe Jean-Claude. Robot motion planning[M]. Norwell, MA: Kluwer Academic Publishers, 1991
  • 10Kavraki L, Svestka P, Latombe J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation, 1996, 12(4): 566-580

共引文献148

同被引文献19

  • 1Iagnemma K, Dubowsky S. Traction Control of Wheeled Robotic Vehicles in Rough Terrain with Application to Planetary Rovers[J].The Interna- tional Journal of Robotics Research, 2004, 23: 1029-1040.
  • 2Ishigami G, Nagatani K, Yoshida K. Slope Traversal Controls for Planetary Exploration Rover on Sandy Terrain[J]. Journal of Field Robotics, 2009,26 ( 3 ) : 264-286.
  • 3Ishigami G, Miwa A, Nagatani K, et al. Terrame- chanies- based Model for Steering Maneuver of Planetary Exploration Rovers on Loose Soil [J]. Journal of Field Robotics,2007,24(3) :233-250.
  • 4Ishigami G, Miwa A, Nagatani K, et al. Terrame- chanics--based Analysis on Slope Traversability for a Planetary Exploration rover [C]//International Symposium on Space Technology and Science. To- kyo:Japan Society for Aeronautical and Space Sci- ences, 2006 : 1025-1030.
  • 5Jansoi Z, Hanamto B. The Analytical Determination of Drawbar Pull as a Function of Slip for Tracked Vehicles in Deformable Soils [C]//International Conference of the International Society for Terrain-- Vehicle Systems. Turin: ISTVS, 1961; 707-726.
  • 6Iagnemma K, Kang S, Shibly H, et al. Online Ter- rain Parameter Estimation for Wheeled Mobile Ro- bots with Application to Planetary Rovers [J]. IEEE Trans. Robitics,2004,20(5):921-927.
  • 7Mao S G, Han P S R. Nonlinear ComplementarityEquations for Modeling Tire--soil Interaction--an Incremental Bekker Approach[J]. Journal of Sound and Vibration 2008,312 : 380-398.
  • 8Iagnemma K, Dubowsky S. Traction Control of Wheeled Robotic Vehicles in Rough Terrain with Application to Planetary Rovers [J]. The International Journal of Robotics Research (S0278-3649), 2004, 23 (10-11): 1029-1040.
  • 9Ishigami G, Nagatani K, Yoshida K. Slope Tmversal Controls for Planetary Exploration Rover on Sandy Terrain [J]. Journal of Field Robotics (S1556-4959), 2009, 26(3): 264- 286.
  • 10Lamon P, Krebs A, Lauria M, et al. Wheel Torque Control for a Rough Terrain Rover [C]// IEEE 2004 International Conference on robotics and automation .New Orleans,LA,USA:2004, 5: 4682-4687.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部