期刊文献+

一种求解随机期望值模型的有效算法 被引量:1

An efficient algorithm for solving stochastic expected value models
下载PDF
导出
摘要 随机期望值模型是一类有着广泛应用背景的随机规划问题.为了寻找更为有效的求解随机期望值模型的算法,通过采用随机仿真来逼近随机函数,在微粒群算法中利用随机仿真进行适应值估计和实现为了检验解的可行性,从而给出了求解随机期望值模型的新的算法.最后,通过实例仿真说明了算法的正确性和有效性. The stochastic expected value model is a class of stochastic programming problems with wide applicability. In order to find a more effective algorithm for solving these problems, we used random simulations to approach the stochastic function in particle swarm optimization, obtaining an estimation of the degree of fitness and verifying the feasibility of the solution. Finally, results of simulations show the correctness and effectiveness of this algorithm.
作者 肖宁 曾建潮
出处 《智能系统学报》 2008年第3期279-282,共4页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(60674104)
关键词 随机规划 随机期望值模型 微粒群算法 随机仿真 stochastic programming stochastic expected value models particle swarm optimization random simulation
  • 相关文献

参考文献4

  • 1[3]ZHOU J.Uncapacitated facility layout problem with stochastic demands[C]// Operations Research Society of China Academic Exchange Conference Proceedings.HongKong:HongKong Global-Link Press,2000:904-911.
  • 2[5]KENNEDY J,EBERHART R.Particle swarm optimization[C]//Proc International Conference on Neural Networks.Perth,Australia,1995:1942-1948.
  • 3[7]KOAY C A,SRINIVASAN D.Particle swarm optimization based approach for generator maintenancescheduling[C]//Proceedings of the 2003 IEEE Swarm Intelligence Symposium.Indianapolis,USA,2003:167-173.
  • 4[8]SUN Q,SHI Y H,BAUSON W A.Utilizing particleswarm optimization to label a structured beam matrix[C]//Proceedings of the 2003 IEEE Swarm Intelligence Symposium.Indianapolis,USA,2003:118-123.

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部