期刊文献+

供氧充足环境下SBBR实现短程硝化的控制研究 被引量:10

Control of Shortcut Nitrification in SBBR with Adequate Oxygen Supply
下载PDF
导出
摘要 在供氧充足条件下对序批式生物膜反应器SBBR实现短程硝化的途径和机理进行研究.以垃圾渗滤液为处理对象,控制反应器主要环境参数为:溶解氧(DO)5 mg/L,pH 7.0,温度(t)25℃,采用全排水方式,进水周期为12 h.通过数学推导和模型分析,确定以游离氨FA、CO2和HNO2浓度为直接控制因素,进水周期为间接控制因素,在SBBR反应器中实现了有效的短程硝化.结果表明,在氨氮NH4+-N容积负荷0.52 kg/(m3.d),NaHCO3浓度1.5 mg/L的进水条件下,NH4+-N转化率达到89%,NO2--N积累率达到83%,短程硝化作用显著.由此得出FA浓度是供氧充足情况下实现亚硝态氮NO2--N积累的关键因素,CO2作为氨氧化细菌AOB的碳源,则具有进一步提升反应器性能的作用. At the high level of dissolved oxygen (DO) in sequencing batch biofilm reactor(SBBR), the approach and mechanism for realizing shortcut nitrification were researched. Landfill leachate was used as handling of object, the mainly environment parameters of the reactor were controlled as follow: DO 5 mg/L, pH 7.0, temperature 25℃, adopted all drainage mode and 12-hour cycle influent. Through mathematical derivation and modeling analysis,determined free ammonia(FA), CO2 and HNO2 as the direct control factors, whereas the infiuent cycle time was the indirect one, shortcut nitrification was achieved effectively in SBBR. When the volume load of ammonia( NH4 -N) was 0.52 kg/( m·d) and NaHCO3 was 1.5 mg/L in the reactor, the shortcut nitrification effect was apparent as NH4^+-N conversion rate was 89% and NO2-N accumulation rate achieved 83% at the same time. With adequate oxygen supply, the key factors of achieving NO2-N accumulation is FA concentration, and as the carbon source of ammonia-oxidizing bacteria, CO2 can upgrade the reactor performance further.
出处 《环境科学》 EI CAS CSCD 北大核心 2008年第7期1860-1866,共7页 Environmental Science
基金 国家重点基础研究发展规划(973)项目(2005CB724203) 国家自然科学基金项目(50478053) 湖南省自然科学基金项目(04JJ3004 05JJ2004) 湖南省科技计划项目(05FJ3001) 长沙市科技计划重点项目(K051132-72)
关键词 SBBR 短程硝化 模型 氨氮转化 亚硝态氮积累 SBBR shortcut nitrification model ammonia conversion nitrite accumulation
  • 相关文献

参考文献24

二级参考文献108

  • 1张少辉,郑平.厌氧氨氧化反应器启动方法的研究[J].中国环境科学,2004,24(4):496-500. 被引量:65
  • 2国家环保局.水和废水监测分析方法[M].北京:中国环境科学出版社,1989.260-263.
  • 3张赐承.中南地区城市污水处理现状简介[J].城市环境,2000,14(4):9-14.
  • 4[1]Randall CW, Buth D. Nitrite build-up in activated sludge resulting from temperature effects [J]. JWPCF,1984, 56(9):1039- 1044.
  • 5[2]Charley RC,Hooper DG, Mclee AG. Nitrification kinetics in activated sludge at various temperatures and dissolved oxygen concentrations [J]. Water Research, 1980, 14:1387- 1396.
  • 6[3]Antonion P, Hamilton J, Koopman B, et al. Effect of temperature and pH on the activity maximum specific growth rate of nitrifying bacteria [J]. Water Research, 1990, 24:97- 101.
  • 7[4]Hanaki K , Wantawin C, Ohgaki S. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor [J]. Water Research, 1990, 24(3):297- 302.
  • 8[5]Turk O, Mavinic DC. Maintaining nitrite build-up in a system acclimated to free ammonia [J]. Water Research, 1989, 23(22): 1383- 1388.
  • 9[1]Anthonisen A, Loehr R, Prakasam T et al., 1976. Inhibition of nitrification by ammonia and nitrous acid[J]. J Wat Pollut Cont Fed, 48: 835-852.
  • 10[2]Bernhard W, Wolfgang R, 2003. The role of inorganic carbon limitation in biological nitrogen removal of extremely ammonia concentrated wastewater[J]. Water Research, 37: 1100-1110.

共引文献278

同被引文献126

引证文献10

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部