期刊文献+

Z-代数格和Z-代数交结构 被引量:1

Z-algebraic Lattices and Z-algebraic Intersection Structures
下载PDF
导出
摘要 讨论Z-代数格,Z-代数交结构以及Z-代数闭包算子之间的关系,得到了格L上的Z-代数闭包算子与带顶元的Z-代数交结构之间存在一一对应关系,并且每一个Z-代数格都与带顶元的Z-代数交结构同构。 In this paper, some relations between Z-algebraic lattices, Z-algebraic intersection structures and Z-algebraic closure operators are investigated. It is obtained that the relationship between Z-algebraic closure operators and topped Z-algebraic intersection structures on L is a bijective one and that every Z-algebraic lattice L is isomorphic to a topped Z-algebraic intersection structure on L.
出处 《模糊系统与数学》 CSCD 北大核心 2008年第3期54-57,共4页 Fuzzy Systems and Mathematics
基金 国家自然基金资助项目(10471035) 教育部博士点基金资助项目(2004194) 湖南省自然科学基金资助项目(06JJ20041)
关键词 Z-代数闭包算子 Z-代数交结构 Z-代数格 Z-紧元 Z-algebraic Closure Operators Z-algebraic Intersection Structures Z-algebraic Lattices Z-compact Elements
  • 相关文献

参考文献8

  • 1Davey B A,Priestley H A. Introduction to lattice and order[M].The Press Syndicate of the University of Cambridge, 2002.
  • 2Raney G N. Completely distributive complete lattices[J]. Proc. Amer. Math. Soc. , 1952, (3) :677-680.
  • 3Wright J B,Wagner E G,Thatcher j w. A uniform approach to inductive posets and inductive closure[J].Theoret. Comput. Sci. , 1978, (7) : 55-77.
  • 4Baranga A. Z-continuous posets[J]. Discr. math. , 1996, (152) :33-45.
  • 5Erne M. Z-continuous posets and their topological manifestation[J]. Appl. Categ. Stru. , 1999, (7) : 31-70.
  • 6Bandelt H J,Erne M. The category of Z-continuous posets[J].J. Pure and Appl. Algebra, 1983, (30) :219-226.
  • 7Powers R C,Riedel T. Z-semicontinuous posets[J].Order,2003, (20) :365-371.
  • 8徐晓泉,罗懋康,黄艳.拟Z-连续domain和Z-交连续domain[J].数学学报(中文版),2005,48(2):221-234. 被引量:13

二级参考文献19

  • 1Venugopolan P., Quasicontinuous posets, Semigroup Forum, 1990, 41: 193-200.
  • 2Scott D. S., Continuous lattices, Lecture Notes in Math., Vol. 274, Springer-Verlag, 1972, 97-136.
  • 3Xu X. Q., Construction of homorphism of M-continuous lattices, Trans. of Amer. Math. Soc., 1995, 347:3167-3175.
  • 4Xu X. Q., Liu Y. M., The Scott topology and Lawson topology on a Z-quasicontinuous domains, Chinese Ann. of Math., 2003, 24A: 365-376 (in Chinese).
  • 5Heckmann R., Power domain constructions, Ph. D. thesis, Universitat des Saarlandes, 1990.
  • 6Heckmann R., An upper power domain construction in terms of strongly compact sets, Lecture Notes in Computer Science, Vol. 598, New York: Springer-Verlag, 1992, 272-293.
  • 7R. udin M. E., Directed sets with converge, in: Proc. of Riverside symposium on topology and modern analysis, 1980, 305-307.
  • 8Hofmann K. H., Mislove M., Local compactness and continuous lattices, Lecture Notes in Mathematics, Vol.871, New York: Springer-Verlag, 1981, 125-158.
  • 9Kou H., On some questions in domain theory and locale theory, Doctoral dissertation, Sichuan University,1998 (in Chinese).
  • 10Bernays P., A system of axiomatic set theory Ⅲ, J. of Symbolic Logic, 1942, 7: 65-89.

共引文献12

同被引文献11

  • 1Gierz G, Hofmann K H, Keimel K, Lawson J D, Mislove M, Scott D S. Continuous lattices and domains[M].Cambridge University Press, 2003.
  • 2Lawson J D, Xu L S. When does the class [A→B] consist of continuous domains?[J]. Topology Appl. ,2003, 130:91-97.
  • 3Xu L S. Continuity of posets via Scott topology and sobrification[J]. Topology Appl. ,2006,153:1886-1894.
  • 4Zhao B, Zhao D S. Lim-inf-convergence in partially ordered sets[J]. J. Math. Anal. Appl. ,2005,309(2):701-708.
  • 5Wright J B, Wagner E G, Thatcher J W. A uniform approach to inductive posets and inductive closure[J]. Theoret. Comput. Sci. ,1978,7:55-77.
  • 6Venugopalan G. Z-continuous posets[J]. Houston J. Math. , 1986,12: 275-294.
  • 7Babdelt H J, Ern6 M. Representations and embeddings of M-distributive lattices[J]. Houston J. Math. , 1984,10 (3) : 315-324.
  • 8Babdelt H J, Erne M. The category of Z-continuous posets[J]. J. Pure Appl. Algebra, 1983,30(2) : 219- 226.
  • 9Erne M. Z-continuous posets and their topological manifestation[J]. Applied Categorical Structures, 1999,7:31 - 70.
  • 10Baranga A. Z-continuous posets[J]. Discrete Math. , 1996,152 : 33- 45.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部