期刊文献+

非均匀偏振光束通过环状光阑的传输 被引量:1

Propagation of nonuniformly polarized beams through an annular aperture
下载PDF
导出
摘要 使用光束相干偏振矩阵方法,推导出非均匀偏振光束通过环状光阑后偏振度和光强分布的表达式,研究了非均匀偏振光束通过环状光阑后偏振度和光强的变化。结果表明,在横平面上通常偏振度为非均匀分布,但在中心区域近似为均匀分布,均匀分布范围与非均匀偏振光束参数、光阑遮拦比和传输距离有关。初始为均匀分布的光强通过光阑后变为具有中心主极大和小衍射旁瓣的非均匀分布。 By using the beam eoherenee-polarization(BCP) matrix method, the expressions for the degree of polarization and intensity of nonuniformly polarized(NUP) beams propagating through an annular aperture are derived, whieh enable to study the changes in the degree of polarization and intensity of NUP beams propagating through the annular aperture. It is shown that, the degree of polarization is usually nonuniform, but is nearly uniform in the eentral region at the transversal plane, whieh depends on the NUP beam parameters, obseure ratio of the aperture and propagation distanee. The uniform intensity of NUP beams beeomes non-uniform with a eentral prineipal maximum and small diffraetion side lobes after passing through the aperture.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2008年第6期925-929,共5页 High Power Laser and Particle Beams
基金 国家自然科学基金资助课题(10574097)
关键词 非均匀偏振光束 光束相干偏振矩阵 环形光阑 偏振度 Nonuniformly polarized beam Beam coherence-polarization matrix Annular aperture Degree of polarizaotion
  • 相关文献

参考文献8

  • 1Gori F, Santarsiero M, Piquero G, et al. Partially polarized Gaussian Schell-model beams[J]. Pure Appl Optics, 2001, 3,1-9.
  • 2石丽芬,蒲继雄,陈子阳.部分相干电磁光束在湍流介质中传输的偏振变化[J].强激光与粒子束,2006,18(8):1271-1276. 被引量:5
  • 3Lu Q T, Dong S L, Weber H. Analysis of TEMoo laser beam quality degradation caused by a birefringent Nd:YAG rod[J]. Opt Quantum Electron, 1995, 27 : 777-783.
  • 4Movilla J M, Piquero G. Parametric characterization of non-uniformly polarized beams[J]. Opt Commun, 1998, 14:230-234.
  • 5Pu J X, Lu B D. Focal shifts in focused nonuniformly polarized beams[J]. J Opt Soc Am A, 2001, 18(11),2760-2766.
  • 6Pu J X, Lu B D, Nemoto S. Three-dimensional intensity distribution of focused annular non-uniformly polarized beams[J]. J Mod Opt, 2002, 49(9) : 1501-1513.
  • 7Gori F, Santarsiero M, Vicalvi S, et al. Beam coherence-polarization matrix[J]. Pure Appl Optics, 1998, 7:941-951.
  • 8Mandel L, Wolf E. Optical coherence and quantum optics[M]. Cambridge: Cambridge University Press, 2001:229-239.

二级参考文献13

  • 1Lin Q,Cai Y J.Fractional Fourier transform for partially coherent Gaussian Schell-model beams[J].Optics Letters,2002,27:1672-1674.
  • 2Gbur G,Wolf E.Spreading of partially coherent beams in random media[J].J Opt Soc Am A,2002,19:1592-1598.
  • 3Pu J X,Nemoto S.Spectral shifts of partially coherent beams focused by a lens with chromatic aberration[J].Opt Commun,2002,207:1-5.
  • 4James D F V.Change of polarization of light beams on propagation in free space[J].J Opt Soc Am A,1994,11(5):1641-1643.
  • 5Agrawal G P.Propagation-induced polarization changes in partially coherent optical beams[J].J Opt Soc Am A,2000,17(11):2019-2023.
  • 6Gori F.Matix treatment for partially polarized partially coherent beams[J].Optics Letters,1998,23(4):241-243.
  • 7Gori F,Santarsiero M,Borghi G,et al.Use of the van Cittert-Zernike theorem for partially polarized sources[J].Optics Letters,2000,25(17):1291-1293.
  • 8Salem M,Shirai T,Dogariu A,et al.Long-distance propagation of partially coherent beams through atmosphere turbulence[J].Opt Commun,2003,216(4-6):261-265.
  • 9Roychowdhury H,Ponomarenko S A,Wolf E.Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere[J].Journal of Modern Optics,2005,52(11):1611-1618.
  • 10Salem M,Korotkova O,Dogariu A,et al.Polarization changes in partially coherent electromagnetic beams propagating through turbulent atmosphere[J].Waves in Random Media,2004,14(4):513-523.

共引文献4

同被引文献18

  • 1James D. Change of polarization of light beam on propagation in free space[J]. J Opt Soc Am A ,1994,11(5) :1641-1643.
  • 2Agrawal G P. Propagation-induced polarization changes in partially coherent optical beams[J]. J Opt Soc Am A, 2000,17(11) :2019-2023.
  • 3Schouten H, Visser T, Wolf E. New effect in Young' s interference experiment with partially coherent light[J]. Opt Lett, 2003,28 (14) : 1182- 1184.
  • 4Gori F, Santariero M, Borghi R, et al. Effects of coherence on the degree of propagation in a Young interference pattern[J]. Opt Lett, 2006,31 (6) :688-690.
  • 5Agarwal G, Dogariu A, Visser T, et al. Generation of complete coherence in Young's interference experiment with random mutually uncorre- lated electromangnetic beams[J]. Opt Lett ,2005,30(2) : 120-122.
  • 6Ponomarenko S, Roychowdhury H, Wolf E. Physical significance of complete spatial coherence of optical fields[J]. Phys Lett A, 2005,345 ( 1- 3):10-12.
  • 7Korotkova O, Wolf E. Spectral degree of coherence of a random three-dimensional electromagnetic field[J]. J Opt Soc Am A, 2004,21(12) : 2382-2385.
  • 8Roychowdhury H, Wolf E. Young' s interference experiment with light of any state of coherence and polarization[J]. Opt Commun, 2005,252 (4-6) : 268-274.
  • 9Wang Lei, Lu Baida. Intensity and polarization changes of partially coherent and partially polarized light in Young's experiment[J]. Optik, 2002,113(6): 277-283.
  • 10Qiu Yunli, Guo Hong, Chen Zhaoxi. Paraxial propagation of partially coherent Hermite-Gauss beams[J]. Opt Commun,2005,245(1/6) : 21-26.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部