期刊文献+

设计无标度网络的一种新方法 被引量:2

Novel approach to design scale-free networks
下载PDF
导出
摘要 提出了一种设计生成满足任意指定幂律要求的无标度网络的新方法.该方法利用了无标度网络的一个重要性质,即无标度网络的最终形成是受其度的几何均值控制的.为此提出了一个算法,该算法从一个合理的小世界网络开始,通过富者愈富的原则不断地对当前网络实施删边和加边操作,同时保证网络中的节点个数、网络中的总边数和网络的连通性不变,直到网络中节点度的几何均值达到了一个特定的值为止,生成一个预定的无标度网络.数据仿真验证了该方法总可以生成一个满足指定幂律要求的无标度网络. A novel approach is proposed that leads to the design and evolution of a scale-free network that satisfies any given power-law distribution. The approach makes use of another important feature of the scale-free network: the final formation of a scale-free network is controlled by the geometric mean of its degrees. Therefore, an algorithm is provided: starting from a rational smalbworld net- work, continuously deleting or adding an edge from or to the network by the "rich get richer" principle, meanwhile keeping the total number of nodes, the total number of edges and the connectivity of the network unchanged, until the geometric mean of the degrees of the network reaches a certain value, a prerequisite scale-free network will be formed. Numerical simulations show that the above algorithm can always lead to the evolution of a scale-free network that satisfies any given power-law distribution.
出处 《上海理工大学学报》 EI CAS 北大核心 2008年第3期210-214,共5页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(60774088 60574036) 教育部新世纪优秀人才支持计划(NECE-2005-229) 教育部科学技术重点项目(107024) 天津市应用基础及前沿技术研究计划重点项目(08JCADJC21900)
关键词 无标度网络 幂律分布 幂律指数 几何均值 最大熵原理 scale-free networks power-law distribution power-law exponent geometric mean maximum entropy principle
  • 相关文献

参考文献3

二级参考文献65

  • 1Barabasi A L and Albert R 1999 Science 286 509
  • 2Watts D J and Strogatz S H 1998 Nature 393 440
  • 3Albert R and Barabasi A L 2002 Rev. Mod. Phys. 74 47
  • 4Barabasi A L, Albert R and Jeong H 1999 Physica A 272 173
  • 5Barabasi A L, Albert R and Jeong H 2000 Physica A 281 69
  • 6Faloutsus M, Faloutsus P and Faloutsus C 1999 Comput. Commun. Rev. 29 251
  • 7Albert R, Jeong H and Barabasi A L 1999 Nature 401 130
  • 8Broder A, Kumar R, Maghoul F, Raghavan P, Rajagopalan S, Stata R and Tomkins A 2000 Computer Networks 33 309
  • 9Pastor-Satoras R, Vazques A and Vespegnani A 2001 cond-mat/0105161
  • 10Redner S 1998 Eur. Phys. J. B 4 131

共引文献2

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部