期刊文献+

河流网泥沙输移过程的瞬态特点 被引量:3

Transient characteristics of sediment transport in river networks
下载PDF
导出
摘要 根据水流携沙力及其与河道冲淤态之间的反馈自调节机制,提出了一个枯水期河流网上的泥沙输移模型.利用该模型进行的模拟研究表明,流量改变所引起的水流携沙力同河道冲淤量的变化几乎是相反的.这实际预示着泥沙输移动力学的一种自组织特征:依据河道冲淤情况,水流携沙力所作出的自我调节将趋向于抑制河道大量冲刷或大量淤积.泥沙输移动力学过程的瞬态可以区分为对来水来沙条件改变作出快速响应的快瞬态和在稳定水沙条件下的趋向于稳态的缓慢过程,即慢瞬态.由于出流携沙力的变化相对于入流携沙力的调节滞后一个时步,从而对应流量增减时的冲淤量作相反变化.因此,流域降水的涨落对维持河道相对稳定的冲淤状态起重要作用. Based on the sediment-carrying capacity (SCC) and the feedback mechanism between SCC and erosion-sedimentation, a dynamical model for sediment transport in river network in lower-water season was proposed. The simulated results by this model reveal that as stream flow varies the quantity of erosion-sedimentation (QES) and the sediment-carrying coefficient (representing the SCC of the stream) change respectively in nearly opposite ways. This indicates the self-organized dynamics charac- teristics: according to the QES, the self-adjustment of the SCC tends to prevent a mass of erosion or the occurence of sedimentation. The transience of the dynamical process can fall in two successive phases. The first one is a faster phase and indicates the immediate response of the SCC to the changes of runoff. The second one is a slower phase and shows the dynamic effect is leading to the steady state. The responses of QES to the increase and decrease of the branch runoff are in nearly opposite ways:the increase of the stream flow can induce the fall of QES, while the decrease of the stream flow can result in the rise of QES. Therefore, the fluctuation of the stream flow, caused by the stochastic rainfall, may play an important role in keeping the QES relatively steady.
出处 《上海理工大学学报》 EI CAS 北大核心 2008年第3期253-258,共6页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(10565002) 教育部新世纪优秀人才支持计划(NCET-06-0914)
关键词 泥沙输运动力学 快瞬态 慢瞬态 自组织 sediment transport dynamics fast transience slow transience self-organization
  • 相关文献

参考文献10

  • 1LEOPOLD L B. Downstream change of velocity in rivers [J]. Am J Sci, 1953,251: 606-624.
  • 2BANAVAR J R, COLAIORI F, FLAMMINI A, et al. Sculpting of a fractal river basin [J]. Phys Rev Lett, 1997,78(23): 4 522-4 525.
  • 3DODDS P S, ROTHMAN D H. Geometry of river networks[J]. Phys Rev E, 2000, 63: 016115, 1-13, 016116,1 - 15,016117,1 - 10.
  • 4张蔚,严以新,郑金海,诸裕良.珠江河网与河口一、二维水沙嵌套数学模型研究[J].泥沙研究,2006,31(6):11-17. 被引量:22
  • 5TAKAYASU H, INAOKA H. New type of self-organized criticality in a model of erosion[J]. Phys Rev Lett, 1992,68(7) :966 - 969.
  • 6李旭涛,朱光喜,曹汉强,彭复员.各向异性多尺度自相似随机场与地形构建[J].中国图象图形学报,2007,12(7):1286-1290. 被引量:4
  • 7郝睿,霍杰,张金锋,王旭明.河流网泥沙输移的瞬态模拟[J].自然科学进展,2008,18(2):172-178. 被引量:3
  • 8HAO R, WANG X M, HUO J, et al. Simulating sediment transport on river networks[J]. Mod Phys Lett B, 2008,22(2) :127 - 137.
  • 9中国科学院水利部水土保持研究所.黄土高原水土保持数据库[DB/OL].http://www.bess.csdb.cn/,2006-08-09.
  • 10赵文林.黄河泥沙[M].郑州:黄河水利出版社,1997.116-129,235,104,348-349,355-359,30.

二级参考文献34

  • 1韩其为,杨小庆.我国水库泥沙淤积研究综述[J].中国水利水电科学研究院学报,2003,1(3):169-178. 被引量:88
  • 2逄勇,洪晓瑜,王超.珠江三角洲河网与伶仃洋一、三维水质模型联解研究[J].中山大学学报(自然科学版),2004,43(4):110-112. 被引量:3
  • 3张蔚,严以新,郑金海,诸裕良.珠江河网与河口一、二维水沙嵌套数学模型研究[J].泥沙研究,2006,31(6):11-17. 被引量:22
  • 4Lonley P A,Goodchild M F,Maguire D J,et al.Eds.Geographical Information System Vol.1[M].New York:John Wiley.Sons,Inc.,1999.
  • 5Falconer K J.Fractal Geometry:Mathematical Foundations and Applications[M].New York:John Wiley.Sons,Inc.,1990.
  • 6Pentland A.Fractal-based description of natural scenes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(11):666-674.
  • 7Li Xu-tao,Cao Han-qiang,Zhu Guang-xi,et al.Complicated selfsimilarity of terrain surface[A].In ; Proceedings of SPIE,The Fourth International Symposium on Multispectral Image Processing and Pattern Recognition 2005[C],Wuhan China,2005,6044:414-424.
  • 8Kaplan L M,Kuo C C J.Extending self-similarity for fractional Brownian motion[J].IEEE Transactions on Signal Processing,1994,42(12):3526-3530.
  • 9Pesquet-Popescu B,Vehel J L.Stochastic fractal models for image processing[J].IEEE Transactions on Signal Processing Magazine,2002,19(9):48-62.
  • 10Leopold LB. Downstream change of velocity in rivers. Am J Sci, 1953, 251:606-624.

共引文献32

同被引文献27

  • 1张德茹,梁志勇.黄河下游引水引沙与河道冲淤关系研究综述[J].泥沙研究,1995,21(2):32-42. 被引量:11
  • 2张蔚,严以新,郑金海,诸裕良.珠江河网与河口一、二维水沙嵌套数学模型研究[J].泥沙研究,2006,31(6):11-17. 被引量:22
  • 3尹学良.关于分汊淤积问题[J].水利学报,1988,(3):65-72.
  • 4Kramer S, Marder M. Evolution of river networks[J]. Phys Rev Lett, 1992, 68(2): 205-208.
  • 5Giacometti A, Maritan A, Banavar J R. Continuum model for river networks[J]. Phys Rev Lett, 1995, 75(3): 577-580.
  • 6Sinclair K, Ball R C. Mechanism for global optimization of river networks from local erosion rules[J]. Phys Rev Lett, 1996, 76(18): 3360-3363.
  • 7Leopold L B. Downstream change of velocity in rivers[J]. Am J Sci, 1953, 251(8): 606-624.
  • 8Banavar J R, Colaiori F, FlamminiA, et al. Scaling, optimality, and landscape evolution[J]. J Statistical Physics, 2001, 104(1/2): 1-48.
  • 9Dodds P S, Rothman D H. Geometry of fiver network Ⅲ: Characterization of component connectivity[J]. Phys Rev E, 2000, 63(1): 016117.
  • 10Hao R, Wang X M, Huo J, et al. Simulating sediment transport on networks[J]. Mod Phys Lett B, 2008, 22(2): 127-137.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部