期刊文献+

有先行者优势的确定性网络

Deterministic networks with first-mover advantage
下载PDF
导出
摘要 提出了一个确定性网络模型.模型考虑了新生成节点有不同的强弱状态,用节点度刻画节点的强弱,即强节点的度比较大.通过解析计算,得到了网络的特征系数,其特点是幂律度分布、大集聚系数和幂律簇度相关性,即模型生成了一个无标度层次网络.认为网络是无标度的是由于其生成方式上的特点,越早生成的节点拥有的度越大,这与BA(Barabási-Albert)无标度网络生长方式相似.如果节点度代表了个体拥有的资源、能力及社会关系等,那么越早生成的节点度越大,恰好对应于占先策略,即先行者优势. A simply deterministic network model is proposed, in which new nodes have two statuses: strong and ordinary. Nodes' statuses are depicted by node degree and strong nodes have large degrees. The relevant network parameters are analyzed. The distinct featurs of this web are power-law degree distribution, high clustering and power-law clustering-degree correlations. Thus our network is a scale- free hierarchical one. It is thought that the scale-free property in this web roots in construction method, that the earlier a node is created, the larger degree it will have, which is similar to BA (Barabfisi-Albert) scale-free model. I5 node degree is regarded as capacity, ability or social relations that individual possesses, the large degree of earlier nodes just corresponds to taking precedence, that is the first-mover advantage.
出处 《上海理工大学学报》 EI CAS 北大核心 2008年第3期259-263,共5页 Journal of University of Shanghai For Science and Technology
基金 上海市重点学科建设资助项目(T0502)
关键词 复杂网络 度分布 集聚系数 簇度相关性 直径 complex networks degree distribution clustering coefficient clustering-degree corre- lations diameter
  • 相关文献

参考文献29

  • 1ERDOS P, RENYI A. On random graphs [ J ]. Publications Mathematicae, 1959,6:290 - 297.
  • 2FALOUTSOS M, FALOUTSOS P, FALOUTSOS C. On power law relationships of the Intemet topology[J]. Computer Communication Review, 1999,29 ( 4 ) : 251 - 262.
  • 3VAZQUEZ A, PASTOR-SATORRAS R, VESPIG- NANI A. Large-scale topological and dynamical properties of Intemet[J]. Phys Rev E,2002,65(6) :066130,1 - 12.
  • 4BARABASI A L, ALBERT R, JEONG H. Scale-free characteristics of random networks: the topology of the world-wide web[J ]. Physica A, 2000,281 : 69 - 77.
  • 5ALBERT R,JEONG H,BARABASI A L. The diameter of the world wide web [ J ]. Nature, 1999, 401:130 - 131.
  • 6ADAMIC L, HUBERMAN B. Power-law distribution of the world-wide web[J]. Science,2000,287(24) :2115.
  • 7JEONG H, TOMBOR B, ALBERT R, et al. The large- scale organization of metabolic networks [ J ]. Nature, 2000,407: 651-654.
  • 8TANAKA R. Scale-rich metabolic networks [ J ]. Phys Rev Lett,2005,94:168101,1 - 4.
  • 9YOOK S Y,OLTVAI Z N,BARABASI A L. Functional and topological characterization of protein interaction networks[J]. Proteomics, 2004,4: 928 - 942.
  • 10唐璐,张永光,付雪.Structures of semantic networks: how do we learn semantic knowledge[J].Journal of Southeast University(English Edition),2006,22(3):413-417. 被引量:5

二级参考文献1

  • 1B. J. Kim,A. Trusina,P. Minnhagen,K. Sneppen. Self organized scale-free networks from merging and regeneration[J] 2005,The European Physical Journal B(3):369~372

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部