摘要
针对上行多输入多输出-正交频分多址(MIMO-OFDMA)系统,提出了一种基于粒子滤波的信道响应和载波频偏联合估计算法.首先对信道响应和载波频偏分别采用自回归(AR)和正则化自回归(GAR)模型进行建模,然后利用Rao-Blackwellization理论降低粒子滤波算法的计算复杂度,载波频偏通过粒子滤波算法进行估计,而信道冲激响应则通过卡尔曼滤波更新获得.仿真结果表明,提出的改进算法可以获得比传统粒子滤波算法更低的误块率性能,而算法的复杂度仅略有提高.
A novel particle filter is proposed to estimate the channel response and the carrier frequency offset for uplink multiple input multiple output-orthogonal frequency division multiple access (MIMO- OFDMA) systems. First, the channel response and the frequency offset are described as auto-regressive (AR) model and generalized auto-regressive (GAR) model, respectively. Then the Rao-Black- wellization theory is evolved to reduce the complexity of particle filtering. The frequency offset can be estimated using the particle filter, and the channel response is updated using the Kalman filter. Simulation results show that the proposed scheme has lower block error rate than the regular particle filter, while the processing complexity increases a little.
出处
《北京邮电大学学报》
EI
CAS
CSCD
北大核心
2008年第3期76-79,共4页
Journal of Beijing University of Posts and Telecommunications
关键词
载波频偏
信道估计
粒子滤波器
carrier frequency offset
channel estimation
particle filter