期刊文献+

Chen混沌系统的非线性全局同步控制 被引量:1

Nonlinear Globally Synchronization of Chen Chaotic System
下载PDF
导出
摘要 研究了Chen提出的一个新的混沌系统的混沌同步问题,利用非线性控制方法设计了三种混沌同步控制器,并用李雅普诺夫方法证明了在混沌控制器作用下,驱动、响应混沌系统可以实现全局同步.数值仿真结果表明,所设计的三种混沌控制器都能有效的实现混沌同步,并且具有很强的鲁棒性. Synchronization of Chen chaotic system was studied. Based on nonlinear control method, three sufficient conditions of the controller for synchronization of the chaotic systems were derived. By means of Lyapunov stabilization theorem, it was proved that globally synchronization of the master and slave chaos system could be realized with the controller designed. Simulation results validated the proposed synchronization methods and showed its robusticity.
出处 《大学数学》 北大核心 2008年第3期49-52,共4页 College Mathematics
基金 安徽省教育厅自然科学基金项目(2006KJ249B) 安徽省高等学校青年教师科研资助计划项目(2007jqL100)
关键词 混沌系统 混沌同步 非线性控制 chaotic system chaotic synchronization nonlinear control
  • 相关文献

参考文献12

  • 1Lorenz E N. Deterministic non-periodic flows[J]. J Atmos Sci, 1963, 20(1):130-141.
  • 2Rossler O E. An equation for continuous chaos[J]P.hys Lett A, 1976, 57(5) : 397-398.
  • 3Chen G, Dong X. From chaos to order[M]. Singapore: Worder Scientific, 1998.
  • 4Pecora L M, Carroll T C. Synchronization in chaotic system[J]. Phys Rev Lett. 1990, 64(8):821-824.
  • 5Bielawski S, Derozier D, Glorieux P. Controlling unstable periodic orbits by a delayed continuous feedback[J]. Phys Rev E, 1994, 49(7): 971-974.
  • 6Lv J, Zhou T, Zhang S. Chaos synchronization between linearly coupled chaotic system[J], Chaos, Solition Fractals, 2002, 14(4),, 529-541.
  • 7Chen H K. Global chaos synchronization of new chaotic system via nonlinear control[J]. Chaos, Solition Fractals, 2005, 23(4): 1245-1251.
  • 8Park J H. Controlling chaotic systems via nonlinear feedback control[J]. Chaos, Solition & Fractals, 2005, 23(3) : 1049-1054.
  • 9齐冬莲,魏金岭,赵光宙.基于系统辨识的自适应混沌同步控制研究[J].控制与决策,2001,16(1):120-122. 被引量:4
  • 10樊春霞,姜长生.统一混沌系统自适应同步控制[J].系统工程与电子技术,2004,26(3):358-360. 被引量:9

二级参考文献15

  • 1Carroll T L, Pecora L M. Synchronizing Chaotic Circuits [J]. IEEE Trans. on Circuits Syst., 1991,38(4) :453 -456.
  • 2Savero Mascolo, Guiseppe Grassi. Controlling Chaos via Backstepping Besign[J] .Phys. Rev. E., 1997,56(5):6166-6169.
  • 3Chen G, Ueta T. Yet Another Chaotic Attractor[J]. Int. J. of Bifur.and Chaos, 1999,9:1465- 1466.?A
  • 4Ott E, Grebagi C, Yorke J A. Controlling Chaos [J]. Phys. Rev.Lett., 1990,64(3):1196- 1199.
  • 5Ljupco Kocarev, Ulrich Parlitz, Reggie Brown. Robust Synchronization of Chaotic Systems[J]. Phys. Rev. E., 2000,61(4) :3716- 3720.
  • 6Fang Jinqing,Phys Rev.E,1999年,59卷,3期,2523页
  • 7Wu C W,Int J Bifurcation Chaos,1994年,4卷,4期,974页
  • 8Lai Y C,Phys Rev Lett,1993年,47卷,4期,2357页
  • 9Carroll T L, Pecora L M. Synchronizing Chaotic Circuits [J]. IEEE Trans. on Circuits Syst., 1991,38(4) :453 -456.
  • 10Savero Mascolo, Guiseppe Grassi. Controlling Chaos via Backstepping Besign[J] .Phys. Rev. E., 1997,56(5):6166-6169.

共引文献10

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部