期刊文献+

不连续激励函数时滞Cohen-Grossberg神经网络的动力学性质(英文)

Regular dynamics in delayed Cohen-Grossberg neural networks with discontinuous activation functions
下载PDF
导出
摘要 研究了一类具有不连续激励函数的时滞Cohen-Grossbe神经网络,利用推广的Lyapunov方法,证明了Filippov意义下解全局收敛到惟一的平衡点.在证明过程中使用了链式法.利用该法则可以计算不可微Lyapunov函数对时间t沿右端不连续微分方程的导数. A class of Cohen-Grossberg neural networks where the neuron activations are modeled by discontinuous functions was considered. A tool, the chain rule for computing the time derivative along the neural network solutions of a nondifferentiable Lyapunov function, is used which enables us to apply a Lyapunov-like approach to differential equations with discontinuous right-hand side. By means of the Lyapunov-like approach, a general result is proved on global exponential convergence toward a unique equilibrium point of the neural network solutions in the sense of Filippov.
出处 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期374-378,共5页 Journal of Hunan Agricultural University(Natural Sciences)
基金 Youth Science Foundation of HNAU(07QN17)
关键词 COHEN-GROSSBERG神经网络 全局指数稳定 非线性方法 M-矩阵 Cohen-Grossberg neural networks global exponential stability nonlinear measure M-matrix
  • 相关文献

参考文献16

  • 1Venetianer P L, Roska T. Imagine compression by delayed CNN's[J]. Circuits Syst Ⅰ, 1998, 45: 205-215.
  • 2Zhang Z Z, Zhou T J. Existence of almost periodic solutions for a class of shunting inhibitory cellular neural networks[J]. Journal of Hunan Agricultural University: Natural Sciences, 2006, 32(3): 330-332.
  • 3Wang L, Zou X. Exponential stability of Cohen-Grossberg neural networks[J]. Neural Networks, 2002, 15: 415-422.
  • 4Chen T P, Libin Rong. Robust global exponential stability of Cohen-Grossberg neural networks with time delays[J]. Neural Networks, 2004, 15: 203-206.
  • 5Belair J. Stability in a model of a delayed neural networks [J]. Dynam Differential Equations, 1993, 15: 607-623.
  • 6Forti M, Nistri P. Globle convergence of neural networks with discontinous neuron activations[J]. Circuits Syst Ⅰ, 2003, 50: 1421-1435.
  • 7Hopfield J. Neurons with graded response have collective computational properties like those of two-state neurons [J]. Proc NatAcad Sci, 1984, 81. 3088-3092.
  • 8Li J H, Michel A N, Porod W. Analysis and synthesis of a class of neural networks: Variable structure systems with infinte gain[J]. Circuits Syst Ⅰ, 1989, 36: 713-731.
  • 9Chong E K P, Hui S, Zak S H. An analysis of a class of neural networks for solving linear programming problems [J]. Control, 1999, 44: 1995-2006.
  • 10Forti M, Nistri P, Quincampoix M. Generalized neural networks for nonsmooth nonlinear programming problems[J]. Circuits Syst Ⅰ, 2004, 51: 1741-1754.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部