期刊文献+

基于三角形中线的数据序列线性拟合算法 被引量:4

Data Series Linear Fitting Algorithm Based on Triangular Midline
下载PDF
导出
摘要 从石油测井数据解释的实际应用需求出发,提出一种新的基于三角形中线的数据序列分段算法。在扫描数据的过程中依次计算3个连续数据形成的三角形中线长度,根据自定义的中线长度阈值选择反映序列趋势变化的关键转折点,实现数据序列的线性拟合。实验结果表明该算法具有良好的拟合质量和较高的效率。 Based on analyzing the relation of data points in time series, a novel series segmenting algorithm based on triangular midline is presented. During scanning these temporal data, this approach chooses three continuous data points in turn and calculates the triangle's midline. According to these values and the user-defined distance threshold, this method records important turning points reflecting the sequence's feature. Using these key points, the original time series is segmented and fitted linearly. Experimental results show that the new method is effective.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第13期21-23,共3页 Computer Engineering
基金 国家“973”计划基金资助重点项目(2006CB705800) 2007年上海高校选拔培养优秀青年教师科研专项基金资助项目(egd-07010)
关键词 数据序列 线性拟合 转折点 三角形中线 data series linear fitting turning points triangular midline
  • 相关文献

参考文献5

  • 1Berndt J, Clifford J. Using Dynamic Time Warping to Find Patterns in Time Series[C]//Proc. of AAAI Workshop on Knowledge Discovery in Databases. Seattle, WA, USA: [s. n.], 1994.
  • 2Pavlidis T, Horowitz S. Segmentation of Plane Curves[J]. IEEE Transactions on Computers, 1974, 23(8): 860-870.
  • 3Keogh E. Fast Similarity Search in the Presence of Longitudinal Scaling in Time Series Databases[C]//Proceedings of the 9th International Conference on Tools with Artificial Intelligence. Newport Beach, CA, USA: IEEE Computer Society, 1997.
  • 4Park S, Kim S, Chu W. Segment-based Approach for Subsequence Searches in Sequence Databases[C]//Proc. of the 16th ACM Symp. on Applied Computing. Las Vegas, NV, USA: [s. n.], 2001.
  • 5肖辉,胡运发.基于分段时间弯曲距离的时间序列挖掘[J].计算机研究与发展,2005,42(1):72-78. 被引量:59

二级参考文献16

  • 1G. Das, K. Lin, H. Mannila, et al.Rule discovery from time series. In: Proc. of the 4th Int'l Conf. of Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1998. 16--22.
  • 2A. Debregeas, G. Hebrail. Interactive interpretation of Kohonen maps applied to curves. In: Proc. of the 4th Int'l Conf. of Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1998. 179--183.
  • 3E. Keogh, M. Pazzani. An enhanced representation of time series which allows fast and accurate classification, clustering andrelevance feedback. In: Proc. of the 4th Int'l Conf. of Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1998. 239--241.
  • 4Z. M. Kovacs-Vajna. A fingerprint verification system based on triangular matching and dynamic time warping. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22 (11) : 1266-- 1276.
  • 5S. Park, S. Kim, W. Chu. Segment-based approach for subsequence searches in sequence databases. The 16th ACM Symp on Applied Computing, Las Vegas, NV, 2001.
  • 6S. Kim, S. Park, W. Chu. An index-based approach for similarity search supporting time warping in large sequence databases. The 17th Int'l Conf. on Data Engineering,Heidelberg, Germany, 2001.
  • 7L. Rabiner, B. H. Juang. Fundamentals of Speech Recognition.Englewood Cliffs, NJ: Prentice-Hall, 1993.
  • 8H. J. L. M. Vullings, M. H. G. Verhaegen, H. B.Verbruggen. ECG segmentation using time warping. In: Proc. of 2nd Int'l Symposium on Advances in Intelligent Data Analysis,1997. 275--285.
  • 9D. J. Berndt, J. Clifford. Using dynamic time warping to find patterns in time series. Working Notes of the Knowledge Discovery in Databases Workshop, Seatle, WA, 1994.
  • 10D. M. Gavrila, L. Davis. Towards 3-d model-based tracking and recognition of human movement: A multi-view approach. IEEE Int'l Conf. on Automatic Face and Gesture Recognition, Zurich,Switzerland, 1995.

共引文献58

同被引文献34

引证文献4

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部