期刊文献+

基于模糊神经网络的数据挖掘算法 被引量:1

A Data Mining Algorithm Based On Fuzzy Neural Net
下载PDF
导出
摘要 提出一种基于模糊神经网络进行数据挖掘的新方法。构成模糊神经网络的模糊化层采用高斯函数计算5个模糊隶属度,高斯函数需要的均值、方差以及隶属度的中心值都可通过预先计算采集到的数据得到。模糊推理层采用取小取大运算代替常用的积和运算,加快了网络的推理速度。在模糊神经网络训练阶段,首先利用重心法对模糊化层输出进行反模糊化,再采用BP思想,利用梯度法求误差值并进行反传调整隶属度函数的参数值。为提高网络推理精度和速度,通过设立相应的规则对网络进行裁剪,剪掉多余的节点和权值,最后依据一定的思想对产生的模糊规则进行简化和提取。以工业锻造中的智能温度控制系统的控制数据为例进行仿真,结果表明,该网络具有较高的精度和较好的鲁棒性。 An algorithm of Data Mining based on fuzzy neural net is proposed in the article. The algorithm creates a new fuzzy neural net, in which Gaussian - Function is used to calculate five fuzzy memberships in fuzzy layer. The average and variance required by Gaussian - Function can be calculated in advance through the data to be collected. Using of fuzzy inference from a Max - min operation to replace commonly multiply - add operation accelerates the speed of the network. In training stage, first the centre - of - gravity method is used to resist the fuzzy of the output of the fuzzy layer, and then BP idea is adopted to calculate the error and adjust the membership function parameters. To improve the accuracy and speed of fuzzy neural network, the net, using appropriate rules, crops redundant nodes and weights to extract and simplify the rules. A simulation is performed by using the control data from the intelligent temperature control system in industrial forging, the result shows that the algorithm has higher precision and stronger robustness.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2008年第3期63-66,共4页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国家“863”计划资助项目(2006AA701121)
关键词 数据挖掘 模糊神经网络 网络裁剪 规则提取 data mining fuzzy neural net net crop rules extraction
  • 相关文献

参考文献9

二级参考文献27

  • 1阎平凡.人工神经网络的容量、学习与计算复杂性[J].电子学报,1995,23(5):63-67. 被引量:82
  • 2胡守仁.神经网络应用技术[M].北京:国防科技大学出版社,1998..
  • 3沙福泰.模糊信息处理与模糊神经网络[J].舰船电子对抗,1999,3:33-37.
  • 4[5]Larsen J,Hansen L K.Generalization Performance of Regularized Neural Network Models[C]//Proc.of the IEEE Workshop on Neural networks for Signal Proc.IV,Piscataway,New Jersey,1994:42-51
  • 5[6]Mass W.Neural Nets With superlinear VC-dimension[J].Neural Computation,1994(6):877-884
  • 6[7]Girosi F,Jones M,Poggio T.Regularization Theory and Neural Network Architecture[J].Neural Computation,1995(7):219-269
  • 7[8]Williams P M.Bayesian regularization and pruning using a laplace prior[J].Neural Computation,1995(7):117-143
  • 8[9]Sjoberg J,Ljung L.Overtraining,Regularization,and Searching for Minimum in Neural Networks[C]// Preprint IFAC Symp.on Adaptive Systems in Control and Signal Processing,Grenoble,France.1992:669-674
  • 9[10]Mackay DJC.A practical Bayesian framework for Backpropagation networks[J].Neural Computation,1992,4(3):448-472
  • 10[11]Cataltepe Z,Abu-Mostafa Y S,Magdon-Ismail M.No Free Lunch for Early Stopping[J].Neural Computation,1999(11):995-1009

共引文献88

同被引文献6

  • 1段录平,周丽娟,王宇.基于神经网络的数据挖掘研究[J].自动化技术与应用,2007,26(7):19-20. 被引量:6
  • 2Pearl J, "Data Mining with Graphical Models[D]", Computer Science Dept.Standford University.2000.
  • 3Niugai Fang, Jing Wang, Qingyu Sun, "A New Data Mining Algorithm based on Improved Neural Network", 2009 Asia-Pacific Conference on Information Processing,pp:320 - 323.
  • 4Dr Shuxiang Xu, Prof Ming Zhang, "Data Mining-An Adaptive Neural Network Model for Financial Analysis", Proceedings of the Third International Conference on Information Technology and Applications,pp:320-323.
  • 5Eduardo Ogasawara, Leonardo Murta, Geraldo Zimbrao, OMarta Mattoso. " Neural Networks Cartridges for Data Mining on Time Series ", Proceedings of International Joint Conference on Neural Networks, Proceedings of International Joint Conference on Neural Networks, pp:2302-2309,June 2009.
  • 6刘钊,蒋良孝.基于神经网络的数据挖掘研究[J].计算机工程与应用,2004,40(3):172-173. 被引量:19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部