期刊文献+

一种快速逃离局部极小点的BP算法 被引量:1

Faster escaping from local minima for back-propagation algorithm
下载PDF
导出
摘要 针对反向传播(BP)算法容易陷入局部极小点的问题,提出了一种改进价值函数,使其快速收敛到全局最小点的方法。对扩展的异或问题正弦函数模拟进行了仿真实验,结果对比表明,改进的BP算法能快速逃离局部极小点,收敛到全局最小点,达到了期望的效果。 With the purpose of solving the local minima of standard Back-Propagation (BP) algorithm, a modified error function was proposed to escape from the local minima and converge to the global minima. A modified XOR was used. The result contrast indicates that the new back-propagation algorithm can fast escape from the local minima and converge to the global minima, which is just within the expectation.
出处 《计算机应用》 CSCD 北大核心 2008年第B06期25-27,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60573009) 贵州省省长基金资助项目2005(212)
关键词 逃离局部极小点 价值函数 全局最优 escape from the local minima error function global minima
  • 相关文献

参考文献10

  • 1HAGAN M T.Neural Network Design[M].北京:机械工业出版社,2003.
  • 2KUMAR S.Neural Networks[M].北京:清华大学出版社,2006.
  • 3KAMARTHI S V, PITTNER S. Accelerating neural network training using weight extrapolations [ J]. Neural Networks, 1999, 12(9) : 1285 - 1299.
  • 4YAM J Y F, CHOW T W S. A weight initialization method for improving training speed in feedforward neural network[ J]. Neurocomputing, 2000, 30(1/4): 219-232.
  • 5WANG X G, TANG Z, TAMURA H, etal A modified error function for the baekpropagation algorithm [ J]. Neurocomputing, 2004, 57(3) : 477 -484.
  • 6GORI M, TESI A. On the problem of local minima in backpropagation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(1): 76-86.
  • 7SIGILLITO V G, WING S P, HUTTON L V, et al. Classification of radar returns from the ionosphere using neural networks [ R]. Baltimore, MD: Johns Hopkins University, 1989:262-266.
  • 8GORI M, TESI A. On the problem of local minima in backpropagation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(1): 76-86.
  • 9高宏宾,焦东升,彭商濂.一种基于遗传算法的改进的BP算法[J].计算机与现代化,2006(3):6-8. 被引量:7
  • 10张林,刘先珊,阴和俊.基于模拟退火的Gauss-Newton算法神经网络在短期负荷预测中的应用[J].武汉大学学报(工学版),2005,38(4):28-33. 被引量:4

二级参考文献16

  • 1焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..
  • 2Chen-Chia Chuang, Shun-Feng Su. The annealing robust backpropagation(ARBP)learning algorithm [J]. IEEE, 2000,11(5):1067-1077.
  • 3Mastorocostas P A ,Theocharis J B ,Bakirtzis A G. Fuzzy modeling for short term load forecasting using the orthogonal least squares method[J].IEEE Trans on Power Systems,1999,14(1):29-36.
  • 4Charytoniuk W, Chen M S, Van Olinda P. Nonparametric regression based short-term load forecasting[J]. IEEE Trans on Power Systems,1998,13(3):725-730.
  • 5Papalexopoulos A D, Hesterberg T C. A regression based approach to short term system load forecasting[J]. IEEE Trans on Power Systems ,1990.1535-1547.
  • 6K L Ho, Y Y Hsu, C F Chen, T E Lee, C C Liang, T S Lai, K K Chen. Short term load forecasting of Taiwan power system using a knowledge-based expert system[J].IEEE Trans on Power Systems, 1990,5(4):1214-1221.
  • 7Taylor J W, Buizza R. Neural network load forecasting with weather ensemble predictions[J].IEEE Trans on Power Systems,2002,17(3):626-632.
  • 8Senjyu T, Takara H, Uezato K, Funabashi T. One-hour-ahead load forecasting using neural network[J].IEEE Trans on Power Systems ,2002,17(1):13-118.
  • 9Mohan Saini L, Kumar Soni M. Artificial neural network-based peak load forecasting using conjugate gradient methods[J]. IEEE Trans on Power Systems,2002,17(3):907-912.
  • 10周翔,朱学愚,文成玉,陈崧.基于遗传学习算法和BP算法的神经网络在矿坑涌水量计算中的应用[J].水利学报,2000,31(12):59-63. 被引量:19

共引文献14

同被引文献12

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部