摘要
提出了用先验混合矩阵对盲源进行分离的网络分量分析方法(NCA)。该方法在统计独立性假设不成立的条件下,也能实现对源信号的分离。通过计算机仿真与FastICA和JADE算法进行了性能比较分析,证实了在无统计独立性的假设下,NCA具有更理想的盲源分离效果。
A method of Network Component Analysis (NCA) which separated blind sources using a priori information on the mixing matrix was put forward. Therefore blind source separation could be achieved without the assumption of statistical independence. Performance analysis is given compared with FastICA and JADE through computer simulation. The superiority of NCA is validated without the assumption of statistical independence.
出处
《计算机应用》
CSCD
北大核心
2008年第B06期123-125,129,共4页
journal of Computer Applications
基金
国家自然科学基金资助项目(1037110610471114)
江苏省自然科学基金资助项目(04KJB110097)
关键词
网络分量分析
独立分量分析
盲源分离
Network Component Analysis (NCA)
Independent Component Analysis (ICA)
Blind Source Separation (BSS)