期刊文献+

基于网络分量分析的盲源分离方法

Blind source separation based on network component analysis
下载PDF
导出
摘要 提出了用先验混合矩阵对盲源进行分离的网络分量分析方法(NCA)。该方法在统计独立性假设不成立的条件下,也能实现对源信号的分离。通过计算机仿真与FastICA和JADE算法进行了性能比较分析,证实了在无统计独立性的假设下,NCA具有更理想的盲源分离效果。 A method of Network Component Analysis (NCA) which separated blind sources using a priori information on the mixing matrix was put forward. Therefore blind source separation could be achieved without the assumption of statistical independence. Performance analysis is given compared with FastICA and JADE through computer simulation. The superiority of NCA is validated without the assumption of statistical independence.
出处 《计算机应用》 CSCD 北大核心 2008年第B06期123-125,129,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(1037110610471114) 江苏省自然科学基金资助项目(04KJB110097)
关键词 网络分量分析 独立分量分析 盲源分离 Network Component Analysis (NCA) Independent Component Analysis (ICA) Blind Source Separation (BSS)
  • 相关文献

参考文献14

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2LI LEI, YAN FEI. A new independent component analysis algorithm based on extended-natural gradient[ C]// IEEE International Conference on Machine Learning and Cybernetics. Hong Kong: World Scientific, 2007:2416 -2420.
  • 3COMON P. Independent component analysis-a new concept?[ J]. Signal Processing, 1994, 36(3) : 287 - 314.
  • 4王毅,牛奕龙,陈海洋.独立分量分析的基本问题与研究进展[J].计算机工程与应用,2005,41(27):38-42. 被引量:19
  • 5LEE S I, BATZOGLOU S. Application of independent component analysis to microarrays [ J]. Genome Biology, 2003, 4(11) : 76 - 80.
  • 6CHANG C Q, YAU S F, KWOK P, et al. Uncorrelated component analysis for blind source separation [ J]. Circuits Systems and Signal Processing, 1999, 18:225-239.
  • 7DONOHO D, STODDEN V. When does non-negative matrix faetorization give a correct decomposition into parts? [ C]// NIPS2003: Advances in Neural Information Processing. New York: MIT press, 2004, 16.
  • 8CHANG C Q, REN J Y, FUNG P C W, et al. A sparse component analysis approach to EPR spectra decomposition[ J]. Journal of Magnetic Resonance,2005,175:242 -255.
  • 9LIAO J C, BOSCOLO R, YANG Y L, et al. Network component analysis: reconstruction of regulatory signals in biological systems[ J]. Proceedings of the National's Academy of Sciences ( PNAS), 2003, 100(26) : 15522 - 15527.
  • 10BOSCOLO R, SABATTI C, LIAO J C, et al. A generalized framework for network component analysis[J]. IEEE Transaction on Computational Biology and Bioinformatics, 2005, 2:289 - 301.

二级参考文献87

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 3[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 4[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 5[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 6[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 7[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 8[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.
  • 9[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025.
  • 10[9]Cardoso J F,Laheld B.Equivariant adaptive source separation [J].IEEE Trans.Signal Processing,1996,44:3017 - 3029.

共引文献239

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部