期刊文献+

带区间参数的影响图 被引量:1

Influence diagram with interval probability parameters
下载PDF
导出
摘要 对传统影响图进行了扩充,提出了带区间参数的影响图(ID)概念,在此基础上,给出了基于遗传算法(GA)的带区间参数影响图的结构学习方法,采用Gibbs采样算法对该类影响图作了近似推理,并应用于具体实例。实验表明,带区间参数的影响图模型适用于求解模糊事件和值不确定事件的概率。 Based on traditional Influence Diagram (ID), ID with interval probability parameters was defined. Then the method for learning ID structures from interval data and the example of approximate inferences were proposed. Experimental results show that our methods are feasible and efficient, and IDs with interval probability parameters are fit for solving fuzzy or uncertain problems.
出处 《计算机应用》 CSCD 北大核心 2008年第B06期156-159,共4页 journal of Computer Applications
基金 教育部"春晖"计划资助项目(Z2005-2-650003) 云南省自然科学基金资助项目(2005F0009Q)
关键词 影响图 区间概率 遗传算法 结构学习 近似推理 Influence Diagram (ID) interval probability Genetic Algorithm (GA) structure learning approximate inference
  • 相关文献

参考文献9

  • 1WEICHSELBERGER K. The theory of interval probability as unifying concept for uncertainty[ J]. International Journal of Approximate Reasoning, 2000, 24(5) : 149 - 170.
  • 2WEICHSELBERGER K, AUGUSTIN T. On the symbiosis of two concepts of conditional interval probability[ C]//Proceedings of the 3rd International Symposium on Imprecise Probabilities and Their Applications: ISIPTA'03. Waterloo, Ontario, CA: Carleton Scientific. 2003:608 - 629.
  • 3LIU WEI-YI, YUE KUN, LIU SHUANG-XIAN, et al. Bayesian network with interval probability parameters[ J]. Journal of Computer Science and Technology, 2007, 4(2) : 64 - 65.
  • 4TANAKA H, SUGIHARA K, MAEDA Y. Non-additive measures by interval probability functions[ J]. Information Sciences, 2004, 164 (6) : 209 - 227.
  • 5BUNTINE W. A guide to the literature on learning probabilistic networks from data[ J]. IEEE Transactions on Knowledge and Data Engineering, 1996, 8(2) : 195 -210.
  • 6CHENG J, GREINER R, KELLY J, et al. Learning Bayesian network from data: An efficient approach based on information theory [ J]. Artificial Intelligence, 2002, 137(1/2) : 43 - 90.
  • 7白磊 刘惟一.一种新的影响图结构学习算法思想.计算机科学,2004,31(9):134-135.
  • 8KOIVISTO M, SOOD K. Exact Bayesian structure discovery in Bayesian networks[ J]. The Journal of Machine Learning Research, 2004, 5:549 - 573.
  • 9HECKERMAN D. A tutorial on learning with Bayesian networks, MSR-TR-95-06[ R]. Washington: Microsoft Reserch, 1995.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部