期刊文献+

基于小波包熵的运动意识任务分类研究 被引量:4

STUDY ON CLASSIFICATION OF IMAGINARY HAND MOVEMENTS BASED ON WAVELET PACKET ENTROPY
下载PDF
导出
摘要 提出了以小波包熵作为脑电特征向量的左右手运动意识任务分类方法,对被测试者想象左右手运动时的脑电小波包熵动态变化情况及分析窗口长度的选择进行了研究。结果表明,小波包熵能很好地反映左右手运动想象的脑电特征变化,用线性判别式算法对脑电特征进行识别,分类正确率达到92.14%。由于小波包熵的计算比较简单,稳定性好,识别率高,为大脑运动意识任务的分类提供了新思路。 Based on wavelet packet entropy derived from EEG, a method of classification of imagining hand movements was proposed. The EEG signals have been recorded during the imagination of left or right hand movement. The wavelet packet entropy of EEG and its dynamic changing properties with respect to time and windows length have been analyzed. The event-related EEG patterns during imagining left and right hand movement were identified by using linear discriminant algorithm. The results show that the method is effective and the correct rate of classification is up to 92.14%. Since the computation of wavelet packet entropy is simple, the result is stable, and the identification rate is high, the new method might provide a new way for the classification of mental tasks.
作者 任亚莉
出处 《生物物理学报》 CAS CSCD 北大核心 2008年第3期227-231,共5页 Acta Biophysica Sinica
基金 甘肃省高等学校研究生导师科研项目计划资助(0710-05)~~
关键词 脑电信号 小波包熵 特征提取 分类 EEG Wavelet packet entropy Characteristic extraction Classification
  • 相关文献

参考文献14

  • 1Vaughan TM. Guest editorial brain-computer interface technology: a review of the second international meeting. IEEE Trans Neural Syst Rehabil, 2003,11(2):94-109
  • 2Curran EA, Stokes MJ. Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer intertace systems. Brain Cogn, 2003,51(3):326-336
  • 3Sykacek P, Roberts S J, Stokes M. Adaptive BCI based on variational Bayesian Kalman filtering: an empirical evaluation. IEEE Trans Biomed Eng, 2004,51(5):719-727
  • 4Deng J, He B. Classification of imaginary tasks from three vhannels of EEG by using an artificial neural network. Proc of the 25th Annual International Conference of the IEEE/ EMBs. Cancun Mexico: IEEE, 2003,3:2289-2291
  • 5李坤,褚蕾蕾,朱世东,吴小培.基于mu节律能量的运动意识分类研究[J].计算机技术与发展,2006,16(8):157-159. 被引量:18
  • 6张爱华,赵予晗.相同步及支持向量机在意识任务识别中的应用[J].甘肃科学学报,2006,18(3):59-63. 被引量:7
  • 7吴小培,叶中付.基于脑电四阶累积量的运动意识分类研究[J].生物物理学报,2005,21(5):364-370. 被引量:11
  • 8裴晓梅,郑崇勋,宾光宇.基于多通道脑电特征运动意识任务的分类[J].西安交通大学学报,2005,39(8):904-907. 被引量:10
  • 9Schlogl A, Lugger K, Pfurtscheller G. Using adaptive autoregressive parameters for a brain-computer-interface experiment. Proceedings of the 19th Annual International Conference IEEE/EMBS, 1997,4:1533-1535
  • 10Pfurtscheller G, Neuper C, Schlogl A, Lugger K. Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans Rehabil Eng, 1998,6(3):316-325

二级参考文献33

  • 1Wolpaw J R, Birbaumer N, McFarland D J, et al. Brain-computer interfaces for communication and control [J]. Clinical Neurophysiology, 2002, 113(6): 767-791.
  • 2Pfurtscheller G, Muller G R, Pfurtscheller J. 'Thought'-control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia [J]. Neuroscience Letters, 2003, 351(1):22-36.
  • 3Schlogl A, Lugger K, Pfurtscheller G. Using adaptive autoregressive parameters for a brain-computer-interface experiment [A]. The 19th Annual International Conference IEEE/EMBS, Chicago,USA,1997.
  • 4Pfurtscheller G, Neuper C, Flotzinger D, et al. EEG-based discrimination between imagination of right and left hand movement [J]. Electroencephalography and Clinical Neurophysiology, 1997, 103(6): 642-651.
  • 5Wackermann J. Towards a quantitative characterization of functional states of the brain: from the non-linear methodology to the global linear description [J]. Int J Psychophysiol, 1999, 34(1): 65-80.
  • 6Pfurtscheller G, da Silva Lopes F H. Event-related EEG/MEG synchronization and desynchronization: basic principles [J]. Clinical Neurophysiology, 1999, 110(11):1 842-1 857.
  • 7Neuper C, Pfurtscheller G. Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates [J]. International Journal of Psychophysiology, 2001, 43(1): 41-58.
  • 8Andrew C, Pfurtscheller G. Event-related coherence as a tool for studying dynamic interaction of brain regions [J]. Electroencephalography and clinical Neurophysiology, 1996, 98(2): 144-148.
  • 9Schlogl A, Neuper C, Pfurtscheller G. Estimating the mutual information of an EEG-based brain-computerinterface [J]. Biomedizinische Technik, 2002, 47(1-2): 3-8.
  • 10边肇祺.模式识别[M].北京:清华大学出版社,1998..

共引文献25

同被引文献28

引证文献4

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部