期刊文献+

一类旅游危机中的疫情传播模型及控制

A Kind of Epidemic Spread Model in Traveling Crisis and Control
下载PDF
导出
摘要 结合病毒对旅游经济的影响及其在旅游者数量上的具体体现,将易感者和感染者作为动态系统中的被捕食种群和捕食种群,建立了具密度制约的种群竞争模型,得到了无病平衡点和地方病平衡点的渐近稳定性和疫情的控制对策. Combining with the impact of virus on tourism economy and the number of tourists, taking susceptibles and infectives during their travels as two competitive populations in a dynamic system, the paper establishes a populating competition differential equation which seems to contain logistic terms, thus obtaining the asymptotic stability of fixed point and getting the suitable strategy to the epidemic situation.
出处 《河北建筑工程学院学报》 CAS 2008年第1期107-108,111,共3页 Journal of Hebei Institute of Architecture and Civil Engineering
关键词 旅游危机 密度制约 无病平衡点 地方病平衡点 渐近稳定性 traveling crisis restrictiry factor infection-free equilibrium point endemic equilibrium point asymptotic stability
  • 相关文献

参考文献4

二级参考文献7

  • 1Venturino E. The influence of diseases on Lotka-Volterra system[J]. Rockymount J Math, 1994, 24,389-402.
  • 2Chattopadhyay J, Arino O. A predator-prey model with disease in the prey[J].Nonlinear Anal, 1999, 36,749-766.
  • 3Yanni Xiao, Lansun Chen. Analysis of a three Species Eco-epidemiological model[J]. J Math Appl, 2001,258, 733-754.
  • 4Nagumo N. Uber die lage der Integralkurven gewonlicher Differantiagleichungen[J]. Proc Phys Math Soc Japan, 1942, 24, 551-567.
  • 5Hale J K, Waltman P. Persistence in infinite-dimensional system[J]. SIAM J Math Anal, 1989, 20,388-396.
  • 6Mena-lorca J, Hethcote H w. Dynamic models of infection diseases as regulations of population sizes[J]. J Math Biol, 1992, 30,693-716.
  • 7原存德,胡宝安.具有阶段结构的SI传染病模型[J].应用数学学报,2002,25(2):193-203. 被引量:51

共引文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部