期刊文献+

基于粗集的多变量决策树方法研究 被引量:1

A Multivariate Decision Tree Method Based on Rough Set
下载PDF
导出
摘要 为了使构造的决策树更简单,规则更容易被理解且精度更高,文章基于粗糙集理论提出了一种对属性约简及泛化的多变量决策树算法。该方法采用条件属性的加权平均粗糙度这个指标来选择测试属性构造决策树。实验表明该方法较ID3算法得到的决策树更小且分类准确率更高。文章还展望用核属性以外的条件组合属性作测试属性构造更简化的多变量决策树。 The paper presents a multivariable Decision Tree Algorithm on the use of attribute reduction and generalization based on rough set theory, for a easier and higher accuracy tree, especially using the indicator that weighted average roughness to select testing attributes and to build decision tree. Experiments show that this method makes more thee and higher classification accuracy rate than ID3. Furthermore, this paper also prospects use multi-conditional attributes other than nuclear attributes as testing attributes to build more simplified multivariable decision tree.
出处 《浙江理工大学学报(自然科学版)》 2008年第4期438-441,共4页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
关键词 粗糙集 多变量决策树 加权平均粗糙度 核属性 测试属性 ID3 rough set multivariable Decision Tree weighted average roughness nuclear attributes testing attributes ID3
  • 相关文献

参考文献6

二级参考文献13

  • 1[1]Quinlan JR. C4.5: Programs for Machine Learning [M]. San Mateo, CA: Morgan Kaufmann, 1993.
  • 2[2]Liu B, Hsu W, Ma Y. Intergrating Classification and Association Rule Mining [A]. Proc KDD[C], 1998.
  • 3[3]Buntine WL, Weigend AS. Computing Second Derivatives in Feed-forward Networks: A Review [J]. IEEE Transactions on Neural Networks, 1991,5(3):480-488.
  • 4[4]Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines [M]. Cambridge Press, 2000. 1-18.
  • 5[5]Pawlak ZW. Rough Sets [J]. International Journal of Information and Computer Science, 1982,11(5):341-356.
  • 6[6]Pawlak ZW. Rough Sets and Intelligent Data Analysis [J]. Information Sciences, 2002,147(1-4):1-12.
  • 7[7]张文修,吴伟志,梁吉业. 粗糙集理论及方法 [M]. 北京:科学出版社,2003. 1-25.
  • 8[9]Beynon M. Reducts within the Variable Precision Rough Set Model: A Further Investigation [J]. European Journal of Operational Research, 2001, 134: 592-605.
  • 9[10]Murphy P, Aha W. UCI Repository of Machine Learning Databases [DB/OL]. http://www.ics.uci.edu/~mlearn/MLRepository.html, 1996.
  • 10[11]Hu X, Cercone N. Data Mining Via Generalization , Discretization and Rough Set Feature Selection [J]. Knowledge and Information System: An International Journal, 1999, 1(1).

共引文献142

同被引文献13

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部