摘要
Two vertical-cavity surface-emitting lasers(VCSELs) are mutually coupled through a partially transparent mirror (PTM) placed in the pathway. The PTM plays the role of external mirror, which controls the feedback strength and coupling strength. We numerically simulate this system by establishing a visible SIMULINK model. The results demonstrate that the anticipation synchronization is achieved and it can tolerate some extent frequency detuning. Moreover, the system shows similar chaos-pass filtering effect on unidireetionally coupled system even both VCSELs are modulated. This system allows simultaneously bidirectional secure message transmission on public channels.
Two vertical-cavity surface-emitting lasers(VCSELs) are mutually coupled through a partially transparent mirror (PTM) placed in the pathway. The PTM plays the role of external mirror, which controls the feedback strength and coupling strength. We numerically simulate this system by establishing a visible SIMULINK model. The results demonstrate that the anticipation synchronization is achieved and it can tolerate some extent frequency detuning. Moreover, the system shows similar chaos-pass filtering effect on unidireetionally coupled system even both VCSELs are modulated. This system allows simultaneously bidirectional secure message transmission on public channels.
基金
the National Natural Science Foundation of China (No.10174057 and 90201011)
the Key Project of Chinese Ministry of Education (No.105148).