期刊文献+

用摄动配置方法求解含时薛定谔方程

SOLVING TIME-DEPENDENT SCHRDINGER EQUATIONS WITH PERTURBED COLLOCATION METHOD
原文传递
导出
摘要 将摄动配置方法应用到含时薛定谔方程,在计算实现的基础上结合摄动配置的特征提出了一类新的数值积分方法,并给出了一个2级2阶和一个3级4阶的辛摄动配置方法对含时薛定谔方程的数值算例.为了检验新的数值积分方法,我们还给出了与两个辛摄动配置格式在理论上等价的辛龙格.库塔方法以及同阶的非辛方法的数值模拟.展示了一些数值结果,并给出了一些分析. The so-called perturbed collocation method is used to the time-dependent SchrSdinger equation and a novel kind of numerical integration based on the computational realization is proposed. A 2-stage 2-order and a 3-stage 4-order symplectic perturbed collocation methods are constructed and used to simulate this SchrSdinger equation numerically. The numerical experiments by using the two equivalent symplectic Runge-Kutta methods and two non-symplectic methods of the same order show that the new numerical integration method is effective.
作者 白洁静
出处 《系统科学与数学》 CSCD 北大核心 2008年第6期649-661,共13页 Journal of Systems Science and Mathematical Sciences
关键词 含时薛定谔方程 摄动配置算法 辛方法 龙格-库塔方法 Time-dependent schroedinger equation, perturbed collocation method, symplectic method, Runge-Kutta method
  • 相关文献

参考文献13

  • 1Harier E, Lubich C and Wanner G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Berlin: Springer, 2002.
  • 2Nφrsett S P and Wanner G. Perturbed collocation and Runge-Kutta methods. Numer. Math., 1981, 38(2): 193-208.
  • 3Nφrsett S P. Collocation and Perturbed Collocation Methods. Numerical Analysis, Berlin: Springer, 1980.
  • 4Ramaswami G. Perturbed collocation and symplectic RKN methods. Advances in Computational Mathematics, 1995, 3(1): 23-40.
  • 5Ramaswami G. Higher order symplectic RK and RKN methods using perturbed collocation. BIT, 1997, 37(2): 465 471.
  • 6Abia L and Sanz-Serna J M. Partitioned Runge-Kutta methods for separable Hamiltonian problems. Math. Comput., 1993, 60(202): 617-634.
  • 7Burrage K and Butcher J C. Stability criteria for implicit Runge-Kutta method. SIAM J. Numer. Anal., 1979, 16(1): 46-57.
  • 8Feng Kang. Difference scheme for Hamiltonian formalism and symplectic geometry. J. Comp. Math., 1988, 4(3): 279-289.
  • 9Hairer E and Leone P. Some properties of symplectic Runge-Kutta methods. New Zealand J. of Math., 2000, 29(2): 133-149.
  • 10Iserles A. Efficient R-K methods for Hamiltionian systems. Bull. Greek Math. Soc., 1991, 32(1): 3-20.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部