摘要
讨论了二阶四点边值问题:-x″(t)=f(t,x(t),x′(t)),t∈I=[0,1];x(0)=ax(ξ),x(1)=bx(η),其中0<ξ<η<1,0≤a,b≤1,f:[0,1]×[0,∞]→[0,∞]是连续的。利用拓扑度理论讨论了其多个解的存在性。
The second-order four-point boundary value problem -x (t)=f(t,x(t),x'(t)),t∈I=[0,1];x(0)=ax(ξ),x(1)=bx(η) was studied, where 0〈ξ〈η〈1,0≤a,b≤1,f:[0,1]×[0,∞]→[0,∞]are non-negative continuous functions. Some degree theory arguments were used to get the multiplicity result.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2008年第6期53-56,共4页
Journal of Shandong University(Natural Science)
关键词
上下解
拓扑度
多解
upper and lower solutions
toplogical degree
multiple solutions