期刊文献+

二阶四点边值问题的三解存在性

Existence of three solutions for some second-order four-point boundary value problems
下载PDF
导出
摘要 讨论了二阶四点边值问题:-x″(t)=f(t,x(t),x′(t)),t∈I=[0,1];x(0)=ax(ξ),x(1)=bx(η),其中0<ξ<η<1,0≤a,b≤1,f:[0,1]×[0,∞]→[0,∞]是连续的。利用拓扑度理论讨论了其多个解的存在性。 The second-order four-point boundary value problem -x (t)=f(t,x(t),x'(t)),t∈I=[0,1];x(0)=ax(ξ),x(1)=bx(η) was studied, where 0〈ξ〈η〈1,0≤a,b≤1,f:[0,1]×[0,∞]→[0,∞]are non-negative continuous functions. Some degree theory arguments were used to get the multiplicity result.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2008年第6期53-56,共4页 Journal of Shandong University(Natural Science)
关键词 上下解 拓扑度 多解 upper and lower solutions toplogical degree multiple solutions
  • 相关文献

参考文献6

  • 1HENDERSON J, THOMPSON H B. Existence of multiple solutions for second order boundary value problems [ J ]. J Differential Equations, 2000, 166:443-454.
  • 2BAI Zhanbing, GE Weigao, YANG Yifu. Maltiphcity results for some second-order four-point boundary value problems[J]. Nonlinear Anal, 2005, 60:491-500.
  • 3BERNFELD S R, LAKSLAMIKANTHAM V. An introduction to nonlinear boundary value problems[ M]. New York: Academic Press, 1974.
  • 4BAI Zhanbing, DU Zengji. Positive solutions for some second-order fottr-point boundary value problems[J]. Math Anal, 21307, 330:34-50.
  • 5Rahmat Ah Khan, WEBB J R L. Existence of least three solutions of a second-order three-point boundary value problem[J]. Nonlinear Analysis, 2006, 64:1356-1366.
  • 6CUPTA C P. Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation[J]. Math Anal Appl, 1992, 168:540-551.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部